Calling the NAG Pseudo and Quasi Random Number Generators
From a Multi-Threaded Environment

1 Introduction

In this article, and the associated example programs, we will show how to call the NAG random number
generators within a multi-threaded enviroment. The examples are written making use of OpenMP (http://
openmp.org/), however the basic structure of the NAG calls will be the same irrespective of the threading
mechanism used. Some OpenMP commands and pragmas are briefly described in this document, however
additional information is available on the OpenMP website, alternatively NAG offer training courses in
OpenMP, details of which can be obtained from mailto:nagmarketing@nag.co.uk.

To start with we give a (very) brief introduction to pseudo and quasi-random numbers. A sequence of
pseudorandom numbers is a sequence of numbers, generated in some systematic way, that are independent
and statistically indistinguishable from a truly random sequence. Quasi-random (or low discrepancy)
numbers are designed to give a more even distribution in multidimensional space and are therefore not
independent and can be easily distinguised from a truly random sequence. Pseudorandom numbers tend to
be used where the independence and "randomness" of the sequence is important often because these
properties are integral to the theory underyling the methodology being used. On the other hand the
structure of quasi-random numbers often makes them more efficient than pseudorandom numbers when
using multidimensional Monte-Carlo methods. The NAG libraries include a third type of sequence,
scrambled quasi-random numbers, which is a hybrid of the two and attempts to keep the structure of quasi-
random numbers whilst adding some of the randomness of pseudorandom numbers (see the g05 Chapter
Introduction and the references given there in for more detail).

Pseudorandom generators are deterministic, that is they are generated in some deterministic way and so
always generate the same sequence of values and this sequence is circular. Letting x; denote the ith
generated value (from some arbitary starting point), then the generated sequence is given by

.’El,.’Ez,...,pr,fL'],l'z,...

where p indicates the length of the sequence before it repeats itself (usually called the period). The starting
point is controlled by the seed used to initialise the random number generator. The quasi-random
generators in the NAG Library are similar, except they have no seed so will always start in the same place.
In Mark 9 of the C Library (and Mark 22 of the Fortran Library) routines were added to rapidly advance
(skip-ahead) the pseudorandom number generators. This means it is possible to go from z; to x;,; for
j > 0 without passing through the intervening points. This functionality allows the routines to be safely
called in a multi-threaded environment in such a way that the same sequence of numbers is generated
irrespective of the number of threads being used. The same can be done for the quasi-random number
generators by making use of the skip ahead parameter present in the initialization routines.

2 Walk Through of an Example Program

Six different example programs are included with this article, and can be downloaded from here. Three are
C example programs and call routines from the NAG C Library, the first calls a pseudorandom generator (a
uniform distribution), the second calls a quasi-random general (the Sobol generator) and the last generates
a scrambled quasi-random sequence (also based on the Sobol generator). The other three programs do the
same, but are written in Fortran and make use of the NAG Fortran Library. The application used in these
examples, that is the way that the generated sequence of numbers is used, is trivial and has no practical
purpose as it only involves summing the sequence (or in the case of the quasi-random generators the
summing of the values from the first dimension). However, this is sufficient to show how these routines
can be called and to confirm that the routines produce the same result (sum) irrespective of the number of
threads used. This last statement needs to come with a partial rider, whilst the sum will be identical in most
cases it is possible that there may be slight variations on some implementations due to the order in which
the generated sequence is summed.

The rest of this section will go through, in some detail, the first of the C example programs
(CPseudo_0penMP. c), which is concerned with calling a pseudorandom generator. The remaining five

http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05intro.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05intro.pdf
/doc/techrep/pdf/tr0311/openmp_rng.zip

example programs follow a similar structure and are heavily commented so hopefully the following
descriptions should be sufficient to explain what is going on in those as well.

The program CPseudo_OpenMP.c is structured as follows:

(a) Start of the serial part of the code. In this example this is where we read in the user supplied
parameters: npaths, iskip and seed, and calculate the length of the state array. This could have
been set to 29 as we are using the Wichmann Hill II generator, but instead we are using the facility
of nag rand init repeatable (g05kfc) to return the required length for us by calling it with 1state =
-1.

lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);

After this call 1state will hold the required value.

(b) Start a parallel section of code:

#pragma omp parallel default(none) \
reduction(+:sumRandom) \
private(ThreadNo, tskip,tnpaths,x,fail,i,tl,NumberOfThreads,state) \
shared(npaths,exit_status,iskip,genid,subid,lstate,seed, lseed)

this pragma informs the compiler that the next block of code should be executed in parallel with
each thread executing the same code. It also tells the compiler that all the variables listed in the
parenthesis after the private statement, that is ThreadNo, tskip etc. are private and hence each
thread should maintain their own copy. Similarly each variable listed in parenthesis after the
shared statement can be shared between the threads and hence only a single copy will exist.
Finally the reduction statement indicates that each thread will have its own copy of the variable
sumRandom and at the end of this parallel block each of those copies will be added together.

(c) Calculate the number of paths that each thread needs to produce (tnpaths) and the amount of the
sequence that needs to be skipped to take the thread to its starting position (tskip) by getting the
number of available threads:

NumberOfThreads = omp_get_num_threads();
getting the thread ID of the current thread (this will be O for the first thread, 1 for the second etc.):
ThreadNo = omp_get_thread_num() ;

calculating tnpaths and tskip as:

if (NumberOfThreads == 1) {

tskip = 0;

tnpaths = npaths;
} else {

tl = npaths % NumberOfThreads;

tl = (ThreadNo < tl) ? ThreadNo : tl;

tskip = ThreadNo * (npaths / NumberOfThreads) + t1;

tnpaths = (npaths + NumberOfThreads - ThreadNo - 1) / NumberOfThreads;
} tskip += iskip;

Calculating tnpaths in this way splits the work as evenly as possible across all the threads. For
example, if we had 5 threads and want to generate 104 values, the first four threads would each
generate 21 values (i.e., tnpaths = 21) and the last thread would generate the remaining 20 values.
The skip for the first thread would be zero, the skip for the second thread would be 21 (i.e., tskip
= 21) as we need to skip over the 21 values generated by the first thread. Similarly, the skips for
the third, fourth and fifth threads would be 42,63 and 84 respectively. The last line tskip +=
iskip; allows for the use of an initial skip. So, for example, if we had previously generated and
used 1000 values in an earlier call to the NAG generators, we would set iskip = 1000 so as not to
reuse the previously generated values.

(d) Because each thread requires its own copy of the NAG C Library error handling structure
(NagError), prior to calling any of the C Library routines inside the parallel region it is important to
initialise the error handling structure

INIT_FAIL(fail);

http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf

at this point we also need to allocate memory for any private arrays, in this case x, which will hold
the generated values, and state which will hold the state of the random number generators.

(¢) Initialise the random number generators:
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);

The current state of the pseudorandom number generators is stored in the array state. Each thread
requires its own copy of this array because as each number is generated or skipped the array will
change. In addition, each thread must have its state array initialised using the same seed (so that
they all start at the same place). Rather than having each thread call nag rand init repeatable
(g05kfe) it is also possible to call this routine once, prior to starting the parallel section and then
have each thread make a copy of the state array effectively replacing the calls to
nag_rand_init repeatable (g05kfc) in the parallel blocks with calls to memcpy.

(f) Skip ahead each thread tskip places:
nag_rand_skip_ahead(tskip, state, &fail);

(g) Generate the tnpaths values from a uniform distribution:
nag_rand_basic(tnpaths, state, x, &fail);

(h) Once the values have been generated we can use them in any way we want, in this example we are
just summing them:

for (i = 0; i < tnpaths; i++)
sumRandom += x[1i];

Because we declared sumRandom in the reduction directive when initialising the parallel region
the summing of the individual contributions from each thread will be taken care of by the compiler.

(1) Finally, before exiting the parallel section of the code we need to free any memory allocated in the
parallel section, which in this example is just x and state.

3 Non-Uniform Pseudorandom Sequences

The NAG libraries have routines for generating values from over 30 different distributions as well as the
uniform distribution used in CPseudo_OpenMP.c and FPseudo_0OpenMP.£90. Whilst it is possible to use
all of these routines in a thread safe manner it is not always possible to do so in such a way that you can
guarantee the statistical properties or ensure that the same sequence of values is produced irrespective of
the number of threads. This is because of the way values from non-uniform distributions are generated.

All non-uniform distribution generators start with a uniform generator and use values from that generator
to obtain values from the required distribution. The NAG Library uses three basic methods for this:
transformation, table search and rejection methods (see the g05 Chapter Introduction). In the best case
scenario one value from the distribution of interest is generated from one uniform value. This happens
most often for the table search method and the transformation method when it is based on the inverse of
the cumulative distribution function. As of Mark 8 of the C Library the following routines have a one-to-
one relationship for all values of the input parameters, and so can be called in an identical manner as
demonstrated in the example program described in Section 2:

uniform (nag_rand_basic (g05sac)), exponential (nag_rand exp (g05sfc)), Normal (nag_rand normal
(g05ske)), logistic (nag_rand logistic (g05slc)), log-normal (nag rand lognormal (g05smc)),
triangular (nag_rand triangular (g05spc)), Weibull (nag rand weibull (g05ssc)), binomial (
nag rand binomial (gO5tac)), logical (nag rand logical (g05tbc)), geometric (nag rand geom
(g05tcc)), discrete (nag rand gen discrete (g05tdc)), hypergeometric (nag_rand hypergeometric
(g05tec)), negative binomial (nag_rand neg bin (g05thc)), Poisson (nag_rand poisson (g05tjc)) and
the discrete uniform (nag_rand_discrete_uniform (g05tlc)).

The equivalent routines in the Mark 22 of the Fortran Library also have a one-to-one relationship. To get
the equivalent Fortran routines to those named above, take the short name, change it to upper case and
replace the last letter with an F, i.e., the Fortran Library equivalent to nag rand basic (g05sac) which has
the short name gO05sac is GO5SAF.

For routines that do not have a one-to-one relationship, i.e., all remaining pseudorandom number
generation routines, it is not possible to obtain a sequence that is identical irrespective of the number of

http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05intro.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05sac.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05sfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05skc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05skc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05slc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05smc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05spc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05ssc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tac.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tbc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tcc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tcc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tdc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tec.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tec.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05thc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tjc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05tlc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05sac.pdf

threads being used. In, addition it is impossible to guarantee the properties of the sequence. This is
because the only way of handling these routines is to make each thread skip ahead "sufficiently far" to
ensure that no values from the underlying uniform distribution are reused, but it is impossible to say how
far "sufficiently far" is. However, the further you skip ahead the less likely you are to be reusing old
values, for example you would be less likely to use a value from the uniform generator multiple times if
you had each thread skip 100 places per generated value compared to having each thread skip 2 places per
generated value.

4 Quasi-Random Sequence Examples

The example program for the quasi-random sequence is very similar to that of the pseudorandom example
detailed above, therefore we will not go through it in detail. The main differences between the two is that
the quasi-random initialisation routine nag_quasi_init (g05ylc) does not have the state array, rather it has
the iref array which plays much the same role and is therefore handled in a similar manner (i.e., each
thread must have its own copy). The other difference is that the quasi-random initialisation routines have a
skip parameter in their interface (iskip), so rather than having to call a separate routine to skip the
sequence ahead, this parameter is set to the skip value (tskip).

The example program for the scrambled quasi-random sequence is an amalgamation of the other two, as
both the pseudo and quasi-random generators must be initialised.

Both of the two distributional generators for quasi-random sequences, the Normal (nag_quasi_rand normal
(g05yjc)) and log-normal (nag_quasi_rand lognormal (g05ykc)) are based on the inverse CDF method and
hence have a one-to-one relationship with the underlying uniform generator. They can therefore be treated
in the same manner as the uniform generator in CSobol_OpenMP.c and FSobol_OpenMP.£90.

S Compiling the Examples

The example programs can be compiled with the GNU compiler collection (http://gcc.gnu.org/) using the
following commands:

C Examples

gcc CPseudo_OpenMP.c -I[INSTALL_DIR]/include [INSTALL_DIR]/lib/libnagc_na-
g.a -lpthread -1lm -fopenmp

Fortran Examples

gfortran FPseudo_OpenMP.f90 -fopenmp -1lm [INSTALL_DIR]/lib/libnag_nag.a

where [INSTALL_DIR] is the name of the directory your version of the NAG Library is installed in. For
additional information of linking programs to the NAG Library please see the user notes for your particular
implementation, which are shipped with the library or available from http://www.nag.co.uk/numeric/CL/
CLinuns.asp and http://www.nag.co.uk/numeric/FL/FLinuns.asp. For examples of compiling OpenMP
programs using other compilers please refer to the documentation of the compiler in question.

6 NAG Library for SMP and Multicore

As well as its serial libraries, NAG offers a library specifically for SMP and Multicore (http://
www.nag.co.uk/numeric/FL/FSdocumentation.asp). This SMP library contains all of the routines found in
the NAG Fortran Library, with the same interfaces, but a number of the routines have been tuned, that is
parallelized or otherwise optimized to give improved performance over the equivalent routine in the NAG
Fortran Library when run on machines with multiple cores. At the time of writing the latest release of this
library, Mark 22, has tuned versions of the quasi-random generators. Later marks will contain tuned
versions of the pseudorandom generators, including routines for distributions that do not use a one-to-one
mapping and so can not be easily parallelized using the method described in Section 3.

http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05ylc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05kfc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05ylc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05ylc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05yjc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05yjc.pdf
http://www.nag.co.uk/numeric/CL/nagdoc_cl09/pdf/G05/g05ykc.pdf

	Calling the NAG Pseudo and Quasi Random Number GeneratorsFrom a Multi-Threaded Environment
	1 Introduction
	2 Walk Through of an Example Program
	3 Non-Uniform Pseudorandom Sequences
	4 Quasi-Random Sequence Examples
	5 Compiling the Examples
	6 NAG Library for SMP and Multicore

