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1 Introduction

In this report we’ll be discussing functions of matrices. What are they, and why might they be of interest

to you? We’ll be using the NAG Library for Python to provide examples and we’ve included some code

snippets that you can run if you have your own installation of the library1.

Let’s use the example of transition matrices from finance to set the scene. Suppose the vectors vn
represent some quantities of interest at time n. For example, each entry might be a credit rating or a stock

price, and nmight denote values obtained at the end of a particular year.

In aMarkov model, the values of vn from one year to the next are related by the equation vn+1 = Pvn,
where P is the transition matrix.

For example, here is a 1-year transition matrix for credit states obtained from Moody’s Investment

Services:

P =



0.8973 0.0976 0.0048 0 0.0003 0 0 0
0.0092 0.8887 0.0964 0.0036 0.0015 0.0002 0 0.0004
0.0008 0.0224 0.9059 0.0609 0.0077 0.0021 0 0.0002
0.0008 0.0037 0.0602 0.8545 0.0648 0.0013 0.0011 0.0019
0.0003 0.0008 0.0046 0.0402 0.8566 0.0788 0.0047 0.0014
0.0001 0.0004 0.0016 0.0053 0.0586 0.8406 0.0274 0.0066

0 0 0 0.0001 0.0279 0.0538 0.6548 0.2535
0 0 0 0 0 0 0 1.0000


.

What if we want to know the 6-month transition matrix? Is there anyway of obtaining it from the data

above? Well after a little thought, you might be able to persuade yourself that we are after somethimg like

the square root of P , namely P 1/2. But is this even defined, and if so how do we compute it? Is it unique?

Could we similarly compute things like P 0.6?

The example above gives a motivation for computing non-integer powers of matrices. It is natural to

then think about more general functions like exp, log, sin or cos. Can we compute them? Do they have any

uses? Welcome to the wonderful world of matrix functions!

2 Defining a matrix function

Perhaps the most intuitive way of defining matrix functions is using Taylor series (various other equivalent

definitions also exist). Recall that for a scalar, x,

1This report is also available from the NAG GitHub as a Jupyter notebook, in which you can run and edit the code snippets

interactively.
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ex = 1 + x+
x2

2!
+

x3

3!
+ · · · .

For an n-by-nmatrix, A, we can define thematrix exponential in a similar way:

eA = I +A+
A2

2!
+

A3

3!
+ · · · .

Functions such as sinA, cosA, sinhA, coshA can similarly be defined via their Taylor expansions. Con-

vergence is guaranteed provided the scalar Taylor series converges at the eigenvalues of A.

2.1 Matrix powers and logarithms

Non-integer matrix powers and matrix logarithms are a little more involved because they are multivalued:

• any solution to eA = A is a logarithm of A,

• any solution toXp = A is a pth root of A.

For example,

(
2 0
0 2

)
and

(
−2 0
0 2

)
are both square roots of

(
4 0
0 4

)
.

However, provided A has no eigenvalues on R− we can define:

• a unique principal logarithm, logA, with eigenvalues in−π < Im(z) < π,
• a unique principal pth root, A1/p, with eigenvalues in−π/p < arg(z) < π/p.

If A is real then so are logA and A1/p. General matrix powers can then be defined via At = et logA.

2.2 A quick example

In the code snippet below, we use the naginterfaces.library.matop submodule from the NAG Library for

Python to compute the principal cube root of a matrix.

In [1]: import numpy as np
import naginterfaces.library as ni
from naginterfaces.library import matop as ni_matop
np.set_printoptions(precision=4)
"Define a matrix"
P = np.array([[55.0, 69.0, 30.0],

[30.0, 46.0, 9.0],
[39.0, 48.0, 37.0]])

cbrtP = ni_matop.real_gen_matrix_pow(P, 1.0/3.0)
print("Cube root:\n{}\n".format(cbrtP))
print("Cubing the answer should give the original matrix:\n{}\n".

format(cbrtP @ cbrtP @ cbrtP))

Cube root:
[[ 3.0000e+00 2.0000e+00 1.0000e+00]
[ 1.0000e+00 3.0000e+00 7.5809e-16]
[ 1.0000e+00 1.0000e+00 3.0000e+00]]

Cubing the answer should give the original matrix:
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[[ 55. 69. 30.]
[ 30. 46. 9.]
[ 39. 48. 37.]]

3 Applications

We now know how to define a variety of matrix functions, but are they actually useful? Lets look at some

applications.

3.1 Complex networks

Network are sets of nodes linked by edges. Examples include maps (in which the nodes and edges are

towns and roads respectively) and social networks (inwhich the nodes and edges represent people and their

connections). A network can be represented using an adjacency matrix. For example, here is a network,

and its adjacency matrix:

A =


0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 .

When studying networks, we often wish to determine which nodes are the most important, and how

well different nodes are connected. Matrix functions can help us here.

• The importance of node i is known as the node centrality. A measure of node centrality is given by

(eA)ii.

• Similarly a measure of how well nodes i and j are connected is given by (eA)ij . This is known as the

node communicability.

In the code below, we use the NAG Library function real_gen_matrix_exp to compute eA for the adja-

cencymatrix above. Perusing the output suggests that nodes 1 and 4 are themost important (they have the

largest node centralities, the diagonal elements) and also the greatest communicability (the (1, 4) element

of eA is the largest of the off-diagonal elements). This agrees with what we might expect from looking at

the graphical representation of the network.

In [2]: A = np.array([[0., 1., 1., 1.],
[1., 0., 0., 1.],
[1., 0., 0., 1.],
[1., 1., 1., 0.]])

expA = ni_matop.real_gen_matrix_exp(A)
print("Matrix exponential:\n{}\n".format(expA))

Matrix exponential:
[[ 4.2482 3.0914 3.0914 3.8803]
[ 3.0914 3.0186 2.0186 3.0914]
[ 3.0914 2.0186 3.0186 3.0914]
[ 3.8803 3.0914 3.0914 4.2482]]
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3.2 Differential equations

An important application ofmatrix functions is in the solution of differential equations, which are ubiquitous

throughout mathematics and the sciences. Consider the equation

d2y

dt2
+Ay = 0, y(0) = y0, y′(0) = y′0,

where y is a vector and A a square matrix. Its solution can be written, using the matrix sine, cosine and

square root, as

y(t) = cos(
√
At)y0 +

√
A

−1
sin(

√
At)y′0.

Alternatively, the solution can be written in terms of the exponential of a larger matrix:[
y
y′

]
= exp

([
0 −tA
tIn 0

])[
y0
y′0

]
.

We will return to this second form of the solution later.

3.3 Further comments

Markov chains are an important application of matrix functions. We encountered them earlier when we

considered the roots of transition matrices. However, there is an important subtlety that we did not con-

sider. Transition matrices are stochastic; that is they are non-negative, with unit row sums. Under what

conditions are the matrix roots of a transition matrix themselves stochastic? This is acutally an unsolved

problem.

The matrix exponential also has an application in Markov chains. The transition matrix P for a timestep

t can be written as P = eQt, where Q is known as the transition intensity matrix. For P to be stochas-

tic, Q must have vanishing row sums. Given a stochastic P , does such a Q exist? This is known as the

embeddability problem, and it is also still unsolved.

Other applications ofmatrix functions includenuclearmagnetic resonance spectroscopy, control theory,

optics, computer graphics and particle physics.

4 How to evaluate matrix functions

Before discussing how we compute functions of matrices it is useful to know a little bit of theory.

Sometimes matrix functions behave like scalar functions. For example, the identities elogA = A and

sin2A+ cos2A = I apply to matrices as well as to scalars. But sometimes matrix functions do not behave

like scalar functions. For example, in general eA+B 6= eAeB and log(eA) 6= A.

There are some extra properties that apply specifically to matrices. For example f(AT ) = f(A)T .
In addition, similarity transformations can easily be applied to matrix functions: if A = V DV −1 then

f(A) = V f(D)V −1. In particular, this means that if the eigenvalues of A are λi then the eigenvalues of

f(A) are f(λi).

4.1 Can we evaluate matrix functions using similarity transformations?

The similarity transformation property suggests a possible method to compute matrix functions. Could we

diagonalize, A = V DV −1, and use f(A) = V f(D)V −1? Afterall, D is diagonal so we need only apply

f to the diagonal elements. The code snippet below does just this. Note that we use the SciPy routine

linalg.solve to increase numerical stability by avoiding explicit computation of V −1.
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In [3]: from scipy import linalg
A = np.array([[ 0.5, 0.5],

[-0.5, 1.5]])
D, V = linalg.eig(A)
sqrtA = linalg.solve(V.T, np.diag(np.sqrt(D)) @ V.T).T
print("Square root:\n{}\n".format(sqrtA))
print("Residual: {:1.3e}".format(linalg.norm(sqrtA @ sqrtA - A)))

Square root:
[[ 0.75+0.j 0.25+0.j]
[-0.25-0.j 1.25+0.j]]

Residual: 1.118e-08

The residual of ∼10−8 might seem small but recall that unit roundoff in double precision arithmetic is

∼10−16 so we might expect to do better. The problem here is that in exact arithmetic A is not actually

diagonalizable. This results in a very poorly conditioned transformation matrix V .

The NAG Library routine for computing square roots of a real matrix is called real_gen_matrix_sqrt.

Rather than diagonalizing, it uses a similarity transformation called a Schur decomposition, which is nu-

merically more stable.

In [4]: sqrtA = ni_matop.real_gen_matrix_sqrt(A)
print("Square root computed by NAG routine:\n{}\n".format(sqrtA))
print("Residual: {:1.3e}".format(linalg.norm(sqrtA @ sqrtA - A)))

Square root computed by NAG routine:
[[ 0.75 0.25]
[-0.25 1.25]]

Residual: 2.989e-16

Using real_gen_matrix_sqrt gave a far smaller residual.

The definitions we introduced earlier suggest an alternative way of evaluating matrix functions: Taylor

series.

4.2 Can we evaluate matrix functions using Taylor series?

The code below computes sinA and cosA by summing the first 100 terms in their respective Taylor series

(the 100th term is already far smaller than machine precision so adding extra terms won’t help us here).

The code then checks whether the identity sin2A+ cos2A = I holds.

In [5]: A = np.array([[ 6.0, 15.4],
[ 15.3, 0.0]])

Atemp = -A @ A/2; cosA=np.eye(2); sinA = np.copy(A)
for i in range(2,100,2):

cosA = cosA + Atemp
sinA = sinA + Atemp @ A/(i+1)
Atemp = -Atemp @ A @ A/((i+1)*(i+2))

print("sin^2 A + cos^2 A:\n{}\n".format(sinA @ sinA + cosA @ cosA))
print("||sin^2 A + cos^2 A - I|| = {:1.3e}".

format(linalg.norm(sinA @ sinA + cosA @ cosA-np.eye(2))))
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sinˆ2 A + cosˆ2 A:
[[ 1.0000e+00 -6.0594e-10]
[ 1.1036e-09 1.0000e+00]]

||sinˆ2 A + cosˆ2 A - I|| = 1.702e-09

Again, the residual of∼10−9 is large in comparison with unit roundoff. Can NAG’s routines do any better?

In [6]: sinA, imnorm1 = ni_matop.real_gen_matrix_fun_std('SIN', A)
cosA, imnorm2 = ni_matop.real_gen_matrix_fun_std('COS', A)
print("sin^2 A + cos^2 A:\n{}\n".format(sinA @ sinA+cosA @ cosA))
print("||sin^2 A + cos^2 A - I|| = {:1.3e}".

format(linalg.norm(sinA @ sinA + cosA @ cosA-np.eye(2))))

sinˆ2 A + cosˆ2 A:
[[ 1.0000e+00 -1.1102e-16]
[ -8.3267e-17 1.0000e+00]]

||sinˆ2 A + cosˆ2 A - I|| = 1.777e-16

In the code above we used real_gen_matrix_fun_std, which is a general purpose routine for computing

various matrix functions. It is based on Taylor expansions but uses various additional tricks to improve the

accuracy of the result.

4.3 So how do we evaluate matrix functions?

The state-of-the-art algorithms in the NAG Library use a variety of techniques depending on the function

being computed. They are summarized in the bullet points below.

• Schur decomposition; A = UTU∗, where T is triangular and U unitary:

– this is a well-conditioned decomposition,

– it is cheaper to work with triangular matrices than full matrices.

• Explicit formulae:

– these are available for diagonal and superdiagonal elements of f(T ), when T is triangular,

– in addition a recursion can be used to compute the square root of triangular matrix.

• Truncated Taylor series:

– the truncation is guided by some error analysis,

– expansion about the mean of the eigenvalues improves stability.

• Padé approximant; f(x) ≈ pm(x)/qn(x) where pm and qn are polynomials of degreem and n:

– for a given accuracy this can be cheaper than a truncated Taylor series (error analysis guides the

choice of parametersm and n),
– continued fraction and partial fraction representations of the approximant can also be useful.

• Scaling and squaring; we can exploit eA = (eA/s)s, where s typically a power of 2:

– we choose s (using a priori error analysis) so that ‖A/s‖ is small, for a better Padé approximant,

– similar formulae are available for other functions e.g. logA = s log(A1/s).
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5 The action of the matrix exponential

Let’s return to the important area of differential equations. Finite difference or finite element discretizations

of partial differential equations often lead to an ordinary differential equation of the form

dy

dt
= Ay, y(0) = b.

The solution is y(t) = etAb. (Recall that the solution to the differential equation we saw earlier could

also be written in terms of the product of a matrix exponential with a vector.)

In real-world applicationsA is typically large and sparse. For example, a 500×500mesh in a PDEmight

yield a matrix with n = 250000, but only 0.002% nonzero entries. But etA is, in general, dense. Explicity

computing it for n = 250000 would involve storing ~500 GB of data for the matrix alone, without even

considering any temporary storage arrays we might need. Even with the best algorithms, this computation

is prohibitively expensive. We are therefore left with the following task: can we evaluate etAb without

explicitly forming etA?

5.1 Computing the action of the matrix exponential: an example

Wewill demonstrate how to use the NAG Library routine real_gen_matrix_actexp_rcomm to compute etAb
without explicitly forming etA. It does this using only matrix-vector multiplications. The routine has a re-

verse communication interface, meaning that it returns control to the calling program whenever a matrix-

vector multiplication is required. This means that we are free to use any storage format we wish for the

sparse matrix A.

We begin by creating a random sparse matrix for our example, and setting up a few arrays that

real_gen_matrix_actexp_rcomm will use as workspace.

In [7]: from scipy import sparse

# Declare the matrix size and generate A, b and t
n = 45000
A = sparse.rand(n,n,0.0002,'csr')
b = np.ones((n,1))
t = 0.8

# Create workspace arrays required by reverse communication routine
irevcm = int(0)
b2 = np.zeros((n,1))
x = np.zeros((n,2))
y = np.zeros((n,2))
p = np.zeros(n)
r = np.zeros(n)
z = np.zeros(n)
comm = {}

# We will count the number of matrix-vector multiplications
count = 0

The routine call itself is enclosed within a while loop. Depending on the value of the integer
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irevcm, we must compute various matrix products (as described in the documentation for real_gen_ma-

trix_exp_rcomm ) before calling the routine once more.

In [8]: while True:
# Call the nag routine
irevcm = ni_matop.real_gen_matrix_actexp_rcomm(irevcm, b, t, b2,

x, y, p, r, z, comm)
if irevcm == 0:

# If the routine exits with irevcm=0 then we are done
break

elif irevcm == 1:
b2 = A @ b

elif irevcm == 2:
y = A @ x

elif irevcm == 3:
x = A.T @ y

elif irevcm == 4:
p = A @ z

elif irevcm == 5:
r = A.T @ z

count = count + 1

print("e^(tA)b = {}\n".format(b.T))
print("Evaluation of e^(tA)b required {} matrix-vector multiplications.".

format(count))

eˆ(tA)b = [[ 12.4755 76.4364 14.002 …, 37.2913 35.9649 20.957 ]]

Evaluation of eˆ(tA)b required 64 matrix-vector multiplications.

6 Sensitivity of matrix functions

In linear algebra, whenever we compute something (be it the solution to a linear system, a set of eigenval-

ues, or a matrix function) it is useful to be able to measure how sensitive the result is to small perturbations

in our initial data.

Here is an example. In the code below, we’ve used real_gen_matrix_log to compute the logarithm of a

matrix A.

In [9]: A = np.array([[-2.00011, 0.49945],
[-0.499451, -2.999]])

logA, imnorm = ni_matop.real_gen_matrix_log(A)
print("log A:\n{}".format(logA))

log A:
[[ 670.1324 669.223 ]
[-669.2244 -668.3002]]
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Next, lets introduce a small perturbation, given by the matrix E, and compute log(A+ E).

In [10]: E = np.array([[0.00001, 0],
[0, 0]])

A2 = A + E
logA2, imnorm = ni_matop.real_gen_matrix_log(A2)
print("log(A+E):\n{}\n".format(logA2))
print("Relative size of perturbation in A: {:1.3e}".

format(linalg.norm(E)/linalg.norm(A)))
print("Relative size of perturbation in log A: {:1.3e}".

format(linalg.norm(logA-logA2)/linalg.norm(logA)))

log(A+E):
[[ 2220.9356 2220.0195]
[-2220.024 -2219.1034]]

Relative size of perturbation in A: 2.722e-06
Relative size of perturbation in log A: 2.317e+00

The logarithm of our new matrix log(A + E) is very different from logA – the perturbation had a very

significant effect.

The sensitivity to perturbations in our data is encapsulated by the condition number. As a rule of thumb

a condition number of 10k may mean k digits of accuracy are lost.

A related concept is that of the Fréchet derivative,Lf (A,E). The Fréchet derivative of amatrix function

tells us about changes in a particular direction:

f(A+ E)− f(A) = Lf (A,E) + o(‖E‖).

TheNAG Library contains routines for computing both Fréchet derivatives and condition numbers ofma-

trix functions. In this final code snippet, we use real_gen_matrix_cond_log and real_gen_matrix_frcht_log

to compute the condition number for the matrix logarithm and the Fréchet derivative in the directionE for

the matrixA that we defined above. The results confirm that the logarithm ofA is highly sensitive to small

perturbations.

In [11]: logA, condla = ni_matop.real_gen_matrix_cond_log(A)
print("Condition number for the matrix logarithm: {:1.3e}\n".

format(condla))
logA, L_log = ni_matop.real_gen_matrix_frcht_log(A, E)
print("Derivative of log(A) in the direction E, L_log(A, E):\n{}\n".

format(L_log))

Condition number for the matrix logarithm: 2.213e+05

Derivative of log(A) in the direction E, L_log(A, E):
[[ 304.2851 304.2814]
[-304.2821 -304.2851]]
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7 Summary

Matrix functions have many applications, in part due to the succinct way they allow us to write down so-

lutions to certain problems (such as differential equations). Sophisticated algorithms are available, using

a variety of techniques. The best way to exploit such algorithms is to use library code. Conditioning and

stability is important consideration when computingmatrix functions, particularly if there are uncertainties

in your initial data.

7.1 Further reading

• The NAG Library for Python is available from:

– https://www.nag.com/nag-library-python.

• The standard text for further information on matrix functions is:

– Functions of Matrices: Theory and Computation. SIAM, 2008. ISBN 9878-0-898716-46-7, by

Nicholas J. Higham.

• For questions and comments on matrix functions at NAG email edvin.hopkins@nag.co.uk.
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