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Abstract

In the field of Scientific Computing there is a big focus on solving time dependent Par-
tial Differential Equations (PDEs) as efficiently and fast as possible. In order to do so, the
PDE is discretized and solved on a mesh at every time step. Adaptive mesh refinement is
used to develop a mesh at every time step which is sparse and which results in an accurate
approximation to the solution.

Interpolating wavelets are successfully used in adaptive mesh refinement (AMR). A detailed
comparison of two wavelets for AMR is done on different data sets: Donoho’s interpolating
wavelet and a lifted version (also called second generation wavelets) of Donoho’s interpolating
wavelet. Moreover, various ways of handling the boundaries are considered. An algorithm to
construct the meshes using wavelets is tested and optimized.

Donoho’s interpolating wavelet with lower order boundary stencil implementation appears
to be the most accurate, whilst resulting in very high compression compared to the original
mesh. Furthermore, adapting the algorithm which constructs the meshes such that it adds
more points for very irregular shapes, turns out to be valuable for solutions with fast changing
features. For one such PDE, Donoho’s interpolating wavelet keeps less than 5% of the points
whilst having an error smaller than 10−4, in other words a sparsification of 20 times. Lastly, an
improvement on the inverse transform during the adaptive mesh refinement leads to promising
results.

1 Introduction
Over the last three decades there have been many developments in wavelet theory. Wavelets can
be used for compression of data and allow for fast interpolation. Therefore, wavelets have a lot
of applications in different fields, the most famous one being image compression. In the field of
scientific computing wavelets also have multiple uses. For the numerical solution of PDEs, the
two main ones are adaptive wavelet Galerkin methods and adaptive wavelet collocation methods. In
the Galerkin methods wavelets are used as basis functions to directly discretize partial differential
equations (PDEs). In the latter method the properties of the wavelets are used to find a sparse
mesh on which the PDEs will be solved.

In this paper the focus will be on adaptive wavelet collocation methods. Because wavelets are
very good in compressing data it makes sense to use this property for adaptive mesh refinement.
Many wavelets have been developed. Typically, the wavelets are designed in such a manner that the
transformation of a data set or function can be calculated quickly. This is important for adaptive
mesh refinement so that the mesh can be calculated without a large overhead. Moreover, because
wavelets are good at compressing data they can be used to find a highly sparse mesh.

Cohen, Daubechies and Feauveau laid the foundation of the first generation orthogonal and
biorthogonal wavelets, [1, 2, 3]. Donoho introduced interpolating wavelets in [4]. Interpolating
wavelets can be used for adaptive mesh refinement. Sweldens introduced a faster and more intuitive
manner to transform functions in their wavelet representation, the lifting scheme, [5, 6, 7, 8]. This
new transform resulted in second generation wavelets, [9]. Due to the lifting scheme a new version of
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Donoho’s interpolating wavelet was introduced, the lifted Donoho’s interpolating wavelet, [10]. This
version of Donoho’s interpolating wavelet tends to improve the ability of the wavelet to represent
functions. This is done by taking a closer look at vanishing moments, [11, 12]. Because meshes are
defined on a finite domain, one should take special care at the boundaries of the domain. Therefore,
two different boundary stencil implementations will be tested, the interpolating boundary stencil
and the lower order boundary stencil.

Algorithms for wavelets based on adaptive mesh refinement were introduced in [13] and [14].
Vasilyev and Bowman combined these methods to introduce an adaptive mesh refinement (AMR)
for non-equidistant meshes and second generation wavelets, [15]. The algorithm can be changed in
the way it thresholds, [16], or in the way it adapts, i.e., how adjacent points are added. Applying
AMR on non-equidistant meshes can lead to stability issues, which are related to the update step,
boundary stencil implementation, and lack of orthogonality, [9, 17]. In this paper equidistant
meshes are tested, however considering the stability issues of non-equidistant meshes also turned
out to be valuable for the equidistant case.

Comparisons between the performance of different wavelets for AMR are scarce. Much research
has been done in collocation methods and applying wavelet based AMR to various kind of PDEs.
Wirasaet researched Donoho’s interpolating wavelet with the interpolating boundary stencil for
AMR, [18]. He considered two types of adjacent points and examined both equidistant and non-
equidistant meshes for 1D and 2D problems. The mesh refinement algorithm is similar to [15] and
the PDEs are solved using finite differences. This collocation method has been tested on different
problems, [19, 20, 21].

A similar collocation method which focuses on PDEs arising in mathematical finance has been
tested in [22, 23]. This method does not use the lifting scheme for wavelet transformation. It
uses Donoho’s interpolating wavelet, the interpolating boundary stencil, and the mesh refinement
of [15] together with finite differences to approximate the derivatives. The method is tested on
equidistant meshes.

Vasilyev and others have designed a similar collocation method, [15, 24, 25, 26, 27, 28]. The
only difference is that the lifted Donoho’s interpolating wavelet is used. Tests have been done on
various PDEs, mainly 1D problems but also in later papers 2D and 3D problems on equidistant
and non-equidistant meshes. In [29] the possibility to use multigrid in conjunction with wavelet
AMR is investigated.

In the literature both Donoho’s interpolating wavelet and the lifted Donoho’s interpolating
wavelet have been used for AMR. However, the two wavelets have not been directly compared.
Because it is not clear which wavelet is favoured, this paper compares both wavelets on various
data sets in 1, 2 and 3 dimensions. Furthermore, in the literature the interpolating boundary
stencil is always used. In this paper the lower order boundary stencil is compared with the inter-
polating boundary stencil, since [9] and [17] suggest that the behaviour of this boundary stencil
implementation is more stable. Indeed, we observe significant differences in performance between
the two boundary stencil implementations, and there is no clear winner, it very much depends on
which wavelet is being used.

When comparing the different wavelets and boundary stencils it is interesting to investigate the
performance of the wavelet: can a sparse mesh be generated for every function, does the sparse
mesh generator have stable behaviour, how local are perturbations in the sparse mesh, what is the
sparsity rate of the generated meshes, and finally, how does the sparse solution extrapolate to the
whole space.

This paper tests wavelets on data sets generated by time dependent PDEs. The performance of
the wavelets and the adaptive mesh refinement (AMR) algorithm are checked by generating sparse
meshes on various data sets.

Each data set consists of the numerical solution of a PDE on a regular dense grid at a sequence
of time steps. Therefore AMR can be applied every time step and the performance of the adapted
meshes can be compared against a (dense) reference solution. Two different classes of problems
are considered. The first is from finance and contains 1D and 2D data. The second is from a
compressible Navier–Stokes problem where energy, density, velocity and pressure are modelled
through a coupled set of equations. We look at 2D and 3D versions of this problem.

We emphasise that in the present work, we do not solve PDEs on adaptive sparse meshes.
Our goal in this paper is to study only the abilities of different wavelets to generate adaptive
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sparse meshes which can accurately reconstruct surfaces which are changing in time. Building a
PDE solver on an (irregular) sparse mesh is in itself a challenging topic which is not addressed
here. However, we believe there is value in decoupling the wavelet based mesh refinement from the
PDE solution and studying this in isolation. A wavelet AMR based PDE solver must work with
the mesh the wavelet gives it. It is important therefore to see whether the different wavelets are
equally good at creating sparse meshes which can accurately track a time-varying surface. Our
study therefore begins with sets of dense reference solutions at sequences of time points and we
then consider how well the different wavelet AMRs can track these surfaces. In some sense this
represents a “best case” scenario for a wavelet AMR based PDE solver: it assumes that at each
time step, the PDE solver on the adaptive sparse mesh can produce a solution which is as accurate
as a reference solution on the dense mesh. This is unlikely to be the case in practice. For a given
wavelet, our results therefore represent an upper bound on accuracy that can be achieved for a
given level of sparsity. Accuracy here refers to what happens when the solution on the sparse mesh
is extrapolated to the dense mesh and compared with the reference solution there.

In Section 2, the theory behind wavelets will be discussed. In this section both Donoho’s
interpolating wavelet and the lifted Donoho’s wavelet will be introduced. Subsequently, in Section
3 the adaptive mesh refinement algorithm is stated. In Section 4, the tests will be explained and
the results will be analysed and evaluated. Finally, Section 5 contains the conclusions.

2 Wavelet Theory
Wavelets can be used to represent data sets or functions. In this sense they could be compared
to the Fourier transform. However, the Fourier transform represents functions with finite support
as functions with infinite support, whereas wavelets preserve the finite support. This is due to
the localisation both in space and frequency of wavelets. Therefore, they have a big advantage
compared to the well known Fourier transform, especially in the sense of compression. A wavelet
transform means that a function will be written as a sum of localised wavelets. This is typically
done in a setting of a family of nested subsets, which are related to each other by dyadic scaling:

{0} ⊂ . . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ L2(R) j ∈ Z.

Each of the spaces Vj can be generated by a Riesz basis of scaling functions, ϕj,k(x) with k ∈ Z.
The complement of Vj in Vj+1 is called the detail space Wj (Vj ⊕Wj = Vj+1 ). The detail spaces
Wj are generated by a Riesz basis of wavelet functions, ψj,m with m ∈ Z. This family of subsets
is called multiresolution analysis (MRA). More on MRA can be found in [3, 30].

The sums used in the MRA are infinite. However, in order to implement the wavelets finite
sums are needed. Typically densest and coarsest levels are fixed and respectively called J2 and J1
with J2, J1 integers satisfying J2 > J1. VJ2 is considered to be a fine approximation space, it is
assumed no finer space exists. In order to approximate a function f ∈ L2 it should be projected
to the densest space VJ2

. Due to the properties of the detail space, this space can be written as
VJ2 = VJ1 ⊕

∑J2−1
j=J1

Wj , which in turn leads to:

f(x) ≈ PVJ2
f(x) = PVJ1

f(x) +

J2−1∑
j=J1

PWj
f(x),

where PUg(x) is the projection of function g onto the space U . Because ϕj,k(x) form a Riesz basis
of Vj , the projection on Vj is defined as:

PVj
f(x) =

∑
k∈Z
〈f, ϕj,k〉ϕj,k =

∑
k∈Z

sj,kϕj,k,

where sj,k are called the smoothing coefficients. Similarly,

PWj
f(x) =

∑
m∈Z
〈f, ψj,m〉ψj,m =

∑
m∈Z

dj,mψj,m,
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where dj,m are called the detail coefficients. This leads to an approximation of f ∈ L2 on the finest
space VJ2

:

f(x) ≈ PVJ2
f(x) =

∑
k∈Z

sJ1,kϕJ1,k(x) +

J2−1∑
j=J1

∑
m∈Z

dj,mψj,m(x).

In order to determine any wavelet representation, the coefficients sJ1,k and dj,m, for J1 ≤ j < J2
and k,m ∈ Z, are needed. They can be determined by the forward transform. Given the smoothing
coefficients at the densest level, sJ2,k, the smoothing coefficients and detail coefficients of the lower
levels can be determined using the forward (wavelet) transform. If the smoothing coefficients at
the coarsest level and the detail coefficients of all levels are known, the inverse (wavelet) transform
can be used to determine the smoothing coefficients at the densest level.

The lifting scheme The forward transform used is based on the lifting scheme, see [7]. Firstly,
a set of points is divided into a set of smoothing points and detail points. This step is called the
split step. Next, the values at the detail points are predicted using the smoothing coefficients:
the predict step. Then the values of the smoothing points are updated using the neighbouring
detail points. This is called the update step. Usually the split step consists of dividing the set
of points into two equally sized sets, where every smoothing point has neighbouring detail points
and every detail point has smoothing points as neighbours. The predict step predicts the detail
coefficients by using a set of smoothing coefficients. The predicted value of the detail coefficient
is then subtracted from the original value. As such, the resulting detail coefficient directly gives
feedback on how well the original value can be predicted from surrounding values. Therefore, in
the threshold phase the detail coefficients with a value close to zero will be removed. The predict
step looks as follows:

dj,m = dj,m −
∑
k∈Z

pksj,m+k,

where pm are the predict coefficients, contained in the predict filter P = {pk}k∈Z. The update
step usually tends to orthogonalize the wavelets, or to increase the dual vanishing moments. This
is done by adding the predicted detail coefficients to the smoothing coefficients:

sj,k = sj,k +
∑
m∈Z

umdj,k+m,

where um are the update coefficients, contained in the update filter U = {um}m∈Z. One can
retrieve the smoothing coefficients at level J1 and the detail coefficients at every level with the
forward transform. The split step will be repeated on the smoothing coefficients which resulted
from the update step. On the new sets of smoothing and detail coefficients, the predict and update
steps are performed. This process is repeated until level J1 is reached and is called the forward
transform.

To get all the values of the smoothing coefficients at level J2, the process described above can
be performed in the inverse order. Furthermore, the update step should be subtracted and the
predict step added. This results in the inverse transform.

Donoho’s interpolating wavelet Donoho’s interpolating wavelet will be presented in the set-
ting of the lifting scheme, for more details see [4]. The smoothing coefficients at level J2 are the
function values at the locations of the coefficients. Predicting the detail coefficients will be done
through polynomial interpolation. A polynomial is fitted on the N surrounding smoothing coeffi-
cients, the value of this polynomial at the location of the detail coefficient is the predicted value.
Because the prediction filter has N coefficients, Donoho’s wavelets are always able to perfectly
represent polynomials up to order N − 1. This means that after the forward transform the detail
coefficients will all be 0. The predict coefficients pNk are given in Table 1. Because the coefficient
sum up to 1

2 , the detail coefficient should be multiplied by a half before the predict step.
Donoho’s interpolating wavelet does not have an update step, hence the smoothing coefficients

will be scaled original function values. The scaling comes from multiplying all the coefficients with√
2 at every level, for more details see [3].
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Table 1: The predict filter PN .
N = 2 N = 4 N = 6

k p2k k p4k k p6k
0 1·2−2 -2 −1·2−5 -4 3·2−9

1 0 -1 0 -3 0
2 1·2−2 0 9·2−5 -2 −25·2−9

1 0 -1 0
2 9·2−5 0 150·2−9

3 0 1 0
4 −1·2−5 2 150·2−9

3 0
4 −25·2−9

5 0
6 3·2−9

In short, to determine the smoothing and detail coefficients of Donoho’s interpolating wavelet,
the smoothing coefficients at level J2 are set equal to the function values. Thereafter, the detail
coefficients are calculated by performing the forward transform as described in Algorithm 1.

Algorithm 1 Forward transform Donoho’s interpolating wavelet
for j=J2 downto J1 + 1 do

[sj−1, dj−1] = split(sj)
for m ∈ Z do

dj−1,m = 1
2dj−1,m −

∑N
k=−N pNk sj−1,m+k

end for
end for

Vanishing moments The order of the wavelet (N) and the dual order (Ñ) are also called the
primal and dual vanishing moments. The orders can be determined by considering the scaling
functions (ϕ) and wavelet functions (ψ) as defined at the beginning of this section. A wavelet
system has N primal vanishing moments if∫ ∞

−∞
xnϕ(x)dx = 0 for 0 < n < N.

Similarly, a wavelet system has Ñ dual vanishing moments if∫ ∞
−∞

xnψ(x)dx = 0 for 0 < n < Ñ.

Donoho’s interpolating wavelet has N primal vanishing moments, however it has 0 dual vanishing
moments. This leads to aliasing: local behaviour on a fine level can be carried through all other
layers and lead to significantly big coefficients on the coarsest level. In other words, the wavelet
cannot isolate a signal at a particular frequency, but passes some of this signal through to lower
frequency filters. This is discussed in more detail in [15]. In order to reduce aliasing one can
increase the dual vanishing moments Ñ . This can be done by adding an update step.

Lifted Donoho’s interpolating wavelet In [10] Sweldens introduced an updated version of
Donoho’s interpolating wavelet, where the dual vanishing moments Ñ can be steered in the initial
phase by adding an update step of order Ñ . The update step works as a smoother. In [12], it
is suggested that for optimal results in accuracy the primal and dual vanishing moments should
be equal. The values of the update filter is actually a shifted version of the predict filter, see
[30]. Hence the Table 1 can be consulted for the filter values. The forward transform of the lifted
Donoho’s interpolating wavelet is given in Algorithm 2. For a detailed explanation of this algorithm
see [30].
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Algorithm 2 Forward transform lifted Donoho’s interpolating wavelet
for j=J2 downto J1+1 do

[sj−1, dj−1] = split(sj)
for m ∈ Z do

dj−1,m = 1
2dj−1,m −

∑N
k=−N pNk sj−1,m+k

end for
for k ∈ Z do

sj−1,k = sj−1,k + 2
∑Ñ

m=−Ñ pÑ−mdj−1,k+m

end for
end for

Table 2: The left interpolating boundary stencil predict filter PL,N .
N = 4 N = 6

k d0 k d0 d1
0 5·2−5 0 63·2−9 −7·2−9

1 15·2−5 1 315·2−9 105·2−9

2 −5·2−5 2 −105·2−8 105·2−8

3 1·2−5 3 63·2−8 −35·2−8

4 −45·2−9 21·2−9

5 7·2−9 −3·2−9

Boundary treatment If the wavelets are implemented, one typically uses a finite domain. If a
predict or update step is performed near the boundary of the domain, it will need points outside
the domain which are not defined. There are several ways to deal with the boundary. Two methods
will be discussed here. Note that for the lifted Donoho’s interpolating wavelet both the smoothing
coefficients and detail coefficients have boundary issues, whereas Donoho’s interpolating wavelet
only needs a boundary stencil implementation for the detail coefficients. Because the predict and
update filters are similar, the cases can be handled similarly.

Interpolating boundary stencil Both the predict and update step are based on fitting a
polynomial on N points. One manner to treat the boundary is to still use N smoothing coefficients
closest to the boundary and fit a polynomial on these points. However, because there are not enough
points on one side of the detail coefficient, the filter will not be symmetric. This lead to special
boundary filter coefficients. The boundary predict step can be written as a filter, similar to the
predict filter. This is done by using the Lagrange polynomial, for more details see [30].

The predict filters at the boundary for N = 2, 4, 6 are given in the Tables 2 and 3. The filter
coefficients are large compared to the coefficients before (see Table 1). This means that small values
near the boundary can have significant effects. At the boundary, polynomials of order N − 1 are
fitted, hence the wavelet is able to reconstruct polynomials up to order N − 1 near the boundary.
However, for data which is not locally a polynomial of order N − 1, it is quite likely that the
boundary polynomial will be a poor approximation to the data since the polynomial is likely to
oscillate, especially for large N . Hence these polynomials may not be good predictors.

Table 3: The right interpolating boundary stencil predict filter PR,N .
N = 2 N = 4 N = 6
k dm k dm−1 dm k dm−2 dm−1 dm

m− 1 − 1
4

m− 3 1·2−5 −5·2−5 m− 5 −3·2−9 7·2−9 −63·2−9

m 3
4

m− 2 −5·2−5 21·2−5 m− 4 21·2−9 −45·2−9 385·2−9

m− 1 15·2−5 −35·2−5 m− 3 −35·2−8 63·2−8 −495·2−8

m 5·2−5 35·2−5 m− 2 105·2−9 −105·2−8 693·2−8

m− 1 105·2−9 315·2−9 −1155·2−9

m −7·2−9 63·2−9 693·2−9
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Lower order boundary stencil The interpolating boundary stencil keeps the filter size the
same and shifts the filter. One other manner to deal with the boundary is by keeping a symmetric
filter, this is done by using a lower order polynomial. The closer the wavelet or scaling function
is to the boundary, the lower the order of this function. Implementing the lower order boundary
stencil is easy. It is not needed to construct different filters, the wavelet and scaling functions
closer to the boundaries simply use the internal predict filters of lower order.

Comparison of the boundaries The downside of the lower order boundary stencil is the loss of
precision near the boundary. In the case of the interpolating boundary stencil the filter coefficients
can be very large compared to the internal filter coefficients. Hence any perturbations from local
polynomial behaviour near the boundary can lead to large errors. Furthermore, at lower levels
the boundary stencil extends far into the interior of the domain, and hence smoothing coefficients
relatively far from the boundary will influence the predicted values, which can lead to higher detail
coefficients (poor predictions) near the boundary.

Multiple dimensions Extension to multiple dimension is done by a tensor product. Firstly, a
step in the forward transform is done in dimension 1, followed by a forward step in dimension 2.
This is repeated until dimension n is reached. For the inverse transform the dimensions should be
traversed in the other direction, starting by dimension n ending at dimension 1.

3 Adaptive Mesh Refinement
A mesh adaptation algorithm for wavelets was introduced in [15] and we essentially use the same
approach. However, as will be discussed later on, we examine different ways of thresholding, adding
neighbours, and calculating the inverse transform. These changes were made after testing adaptive
mesh refinement on the different data sets.

Wavelets are usually defined in a dyadic setting, hence a dyadic mesh is needed. In the case of
second generation wavelets the mesh is not restricted to be dyadic, however in this paper a dyadic
mesh is always chosen. This implies we can use the same predict and update filters on all the
internal points of the meshes, which can lead to more stable behaviour (see [9]).

Mesh setup The wavelet system has a set of nested spaces VJ1
⊆ VJ1+1 ⊆ · · · ⊆ VJ2

, where
J1 corresponds to the coarsest level and J2 to the densest level. If we relate this to meshes, VJ1

corresponds to the coarsest mesh and VJ2 to the finest mesh considered. The different spaces Vj are
defined to be related through dyadic scaling. Therefore, the different meshes, each corresponding
to a Vj , considered will be set up to be dyadic.

There are J2 − J1 evenly spaced meshes Gj , where Gj exists out of 2j points for J1 ≤ j ≤ J2,
i.e.

Gj = {xj,k : 0 ≤ k ≤ 2j − 1},

where j indicates the level and k the spatial location. The mesh is dyadic, hence a 1D grid point
xj,k ∈ Gj corresponds to xj+1,2k in Gj+1 for 0 ≤ k ≤ 2j − 1. So the meshes are nested, i.e.
Gj ⊂ Gj+1, and Gj+1 restricted to the points with even k value gives Gj .

Extending this definition to multiple dimensions is simply done by the tensor product, so in
the 2D setting the squared mesh Gj looks like

Gj = {xj,k,l : 0 ≤ k ≤ 2j − 1, 0 ≤ l ≤ 2j − 1}.

Note this definition can be extended to enable non-square meshes.

Thresholding After the forward transform, there remain relatively few smoothing coefficients
and a lot of detail coefficients. The idea is to keep all points corresponding to smoothing coefficients
in the mesh, and add the points corresponding to detail coefficients with a high absolute value.

The absolute value of a detail coefficient indicates how well that mesh point can be estimated
using the wavelet transform. If the absolute value is low then the wavelet can easily approximate
the function value as some polynomial passing through the neighbouring points. In this case the
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point need not be kept, as long as some neighbouring points are kept. However, if the absolute
value is high then the wavelet cannot accurately approximate the function value and thus the mesh
point should be kept. The approximation of a function using the wavelet transform can be written
as

f(x) ≈ PVJ2
f(x) =

∑
k

sJ2,kϕJ2,k(x)

= PVJ1
f(x) +

J2−1∑
j=J1

PWjf(x) =
∑
k

sJ1,kϕJ1,k(x) +

J2−1∑
j=J1

∑
m

dj,mψj,m(x).

Every point in the dense mesh corresponds to a smoothing coefficient sJ2,k in the densest level.
In another representation, all points in the mesh correspond to either a smoothing coefficient sJ1,k

in the coarsest level or a detail coefficient dj,m in any other level. Note that if the absolute value
of the detail coefficient is small, the term does not influence the approximation of f significantly
and therefore the point can be dropped from the mesh. If the value is high, though, the original
smoothing coefficient is difficult to determine and thus the corresponding detail coefficient will
influence the approximation of f significantly.

Adjacent points If a point xj,k is added to the mesh then it means the absolute value of the
detail coefficient at that point is large. The mesh will be used to evolve a PDE for one or more time
steps. Mesh adaptation incurs some overheads, so it is common to not adapt the mesh at every time
step. It therefore makes sense that the mesh should consist of those points associated with detail
coefficients which are currently large or could possibly become large during the period of time when
the mesh remains unchanged. Therefore, adding points in the adjacent zone of the grid points with
high detail coefficients is needed, as over time these detail coefficients could become significant.
There are two types of neighbouring points considered. Type 1 refers to adding neighbours only in
the direction in which the coefficient operates as a detail coefficient. Commonly in the case of two
or more dimensions, points which have been thresholded are detail coefficients in all dimensions
but in different levels j. In the 1D case, type 1 points in the adjacent zone of xj,k are the points
xj′,k′ such that:

|j − j′| ≤ Llevel |2j−j
′
k − k′| ≤ Lneighbour,

where Llevel are the number of levels in which adjacent points are added and Lneighbour are the
number of adjacent points added per level per direction. So if Llevel = 1 and Lneighbour = 1 then 1
neighbour to the right and 1 to the left of the detail coefficient will be added in the level below,
the same level and the level above.

A second way of adding neighbours is called type 2. In this case not 1 but in all directions in
that level neighbours are added. In other words, the M closest points in level j are added. In both
types of neighbouring points, one can also add points in the neighbouring levels.

Perfect reconstruction The points which have been added up until now are considered as
important. Because the points are significant, one wants to be able to fully construct the values
of these points using the inverse wavelet transform. However, some of the required values might
be lost during the thresholding phase. Hence, the points to perfectly reconstruct the mesh points
currently in the mesh need to be added. These points are called perfect reconstruction points.
The particular points which need to be added in this phase depend on the inverse transform,
i.e., they are dependent on the used wavelet transform. Because the added points should also be
reconstructed perfectly, one should note that the perfect reconstruction check should be repeated
until no new points are added.

For all detail points in the mesh the N neighbouring smoothing coefficients need to be added.
These neighbouring smoothing coefficients correspond to detail coefficients in the lower levels.
The added smoothing coefficients themselves are constructed by neighbouring detail coefficients,
however we assume that if one of these detail coefficients is not already in the mesh, the value
is small so it does not affect the value of the smoothing coefficient significantly. If these detail
coefficients are also added the mesh will end up full. Because both Donoho and lifted Donoho have
the same predict filter, the perfect reconstruction of both wavelets is the same. For significant dj,k
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the points sj,k+n need to be added, where −N/2 + 1 ≤ n ≤ N/2 with N the number of primal
vanishing moments.

Adaptive forward transform Normally, the forward transform is applied to all points in the
mesh. However, not all the values of the smoothing coefficients are known, because the mesh
is sparse. Due to the perfect reconstruction, all smoothing coefficients needed to calculate the
significant detail coefficients of the mesh points are in the mesh. Firstly, it is checked if a point
which is handled as a detail coefficient is in the mesh, if not it will be set to zero. If a smoothing
coefficient is not in the mesh no update needs to be done. If it is in the mesh the update step can
proceed normally, if a detail coefficient is used which is not in the mesh this detail coefficient will
be treated as a zero. This is because in the thresholding phase, detail coefficients close to zero
were removed.

Adaptive inverse transform In order to reconstruct the full function after the forward trans-
form the inverse transform is performed. All the thresholded detail coefficients are very close to
zero, therefore, it is standard to use the normal inverse transform with setting the thresholded
values equal to zero.

However, during testing, it was noticed that the lifted Donoho wavelet had a larger error than
the Donoho wavelet for some 2D data sets. A detailed examination revealed that in the last update
step of the inverse transform, the update was different from the corresponding update step in the
adapted forward transform.

In the inverse transform one wants to reform the original function f , and this is done by undoing
the operations of the forward transform. Hence, it makes sense to create the same environment
as in the last performed forward transform. This adapted forward transform uses zeros for the
update step if detail coefficients are used which are not in the mesh. In the inverse transform
all coefficients will receive a value, hence the update step is different. Therefore, in the adapted
setting one can choose to change the inverse transform. During the update step it is checked if
a detail coefficient is in the mesh. If not, this detail coefficient contributes the value of zero to
the update step instead of its own value. The mesh used to restrict the inverse transform is not
the most recently generated, but the mesh of the time step before the one which was used in the
forward transform. Hence, for the adaptive inverse transform one needs access to the previous
adapted mesh, for example by storing it in memory. During testing the adaptive inverse transform
is compared to the normal inverse transform.

Adaptive thresholding The thresholding of points is connected to the adjacent points, namely,
only for thresholded points are adjacent points added (these can be either type 1 or type 2 points).
This in a sense broadens the way in which thresholding can be done. For example, if a detail
coefficient is high it can be considered as difficult to predict, so it might make sense to add more
neighbours for this kind of points. Below three types of thresholding are described.

version 1 This version is the standard setting. There is one threshold value ε and for all thresh-
olded points, adjacent points of type 1 will be added. The adjacent points in the current level,
level higher and level lower will be added. Furthermore, in these levels only one neighbour on each
side is added.

version 2 In version 2 two values for thresholding ε1 < ε2 are used and again type 1 adjacent
points are considered. The motivation behind two levels of thresholding, is that if a certain detail
coefficient has a very high absolute value then more neighbours might need to be added. For the
very high detail coefficients the two nearest points on both sides can be considered in two levels
above and below the current level. For the standard thresholded points, just one adjacent point
on either side is added in the current level, level above and below. During testing the results of
version 1 and version 2 were similar. Therefore, version 2 will not be mentioned in the results.

version 3 Some of the financial PDEs which were tested produce surfaces with a high peak
which spreads out quickly. In this case a more extreme adding of neighbours might be considered.
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Setting the threshold value dependent on the data gives an indication of the relative difficulty in
predicting the value. A first threshold ε1 is set as in version 1 above, but then a second threshold
εthreshold
1 = |max(f)−min(f)|

4 > ε1 is set at which type 2 adjacent points are added (the value 4 was
chosen after testing the result of different values). So in 2D a square of points will be added around
the thresholded detail coefficient if it is larger than ε2. In the 3D setting this will be a cube of
neighbours.

In algorithm 3 the steps of the adaptive mesh refinement are given.

Algorithm 3 AMR for time dependent PDE
t=0
Mt = {} and denotes the adapted sparse mesh at each time point
Perform the forward transform on smoothing coefficients at level J2.

Add the points corresponding to sJ1
to M0.

Add thresholded points to M0.
Add adjacent points to M0.
Add perfect reconstruction points to M0.
Solve time step(s) on refined mesh M0.

for t=1 upto T do
Perform the adapted forward transform on the restricted grid sJ2

= f(GJ2 |Mt−1
).

Add the points corresponding to sJ1 to Mt.
Add thresholded points to Mt.
Add adjacent points to Mt.
Add perfect reconstruction points to Mt.
Solve time step(s) on refined mesh Mt.

end for
Perform the (adapted) inverse transform on refined mesh to get the solution interpolated onto
the full mesh.

4 Results
The wavelet adaptive mesh refinement was tested on two different classes of PDEs1. The first
class relates to common problems in finance: pricing and calibrating for 1D local volatility and
2D stochastic local volatility (SLV) type models. Depending on input parameters and boundary
conditions a range of different shapes are obtained. The second class of PDEs relates to a 2D
and 3D fluid transport problem in CFD. The dependent variables pressure, energy and density are
characterised by shocks and sharp gradients which travel through time.

The PDEs have been approximated numerically on dense meshes to produce accurate reference
results at each time step. The wavelet AMR starts at the initial solution and then restricts the
subsequent solution surfaces to the newest mesh. At every time step the values on the sparse mesh
are interpolated with the (adaptive) inverse transform onto the dense mesh, after which the result
is checked against the reference solution. This gives the ability to evaluate the performance of the
wavelets at every time step. Only part of the test data is presented here. For more results see [30].

Two types of wavelets are tested, Donoho’s interpolating wavelet and lifted Donoho’s interpolat-
ing wavelet. Both wavelets are tested with two different boundary stencil implementations, lower
order and interpolating boundaries. Furthermore, two wavelet orders will be compared, N = 4 and
N = 6. In the 2D tests, J2 = 8 was assumed to be the finest level of refinement and J1 = 4 the
coarsest level. For the 3D test sets J2 = 7 was taken as the finest level of refinement and J1 = 3
the coarsest level.

The previously described version 1 and 3 of thresholding and adding adjacent points will be
used. For version 3, the high threshold adds five direct neighbours in all directions in the current
level, the level above and below.

In order to indicate which wavelet is tested the following notation is used: Wavelet(primal
order N , dual order Ñ , boundary). Don indicates Donoho’s interpolating wavelet, Swel the lifted

1Provided by the Numerical Algorithms Group.
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Donoho’s interpolating wavelet, int the interpolating boundary stencil and low the lower order
boundary stencil, for example Don(6,0,int) or Swel(4,4,low).

The sparse representation is extended onto the fine mesh using the (adaptive) inverse transform,
i.e. wavelet interpolation. Since the sparse representation must be formed from thresholding on an
adaptive mesh and the wavelet interpolation is not exact, we measure the error that results when
the sparse data is interpolated back onto the fine mesh.

Accuracy measure During testing the relative Frobenius error has been used to measure accu-
racy. This relative error is calculated as follows. Denote by f the reference solution computed on
the dense mesh and let fε be the approximation generated by the wavelets (inverse or adaptive
inverse wavelet transform). The relative Frobenius error is then defined as

||f − fε||F
||f ||F

where we set ||f ||F =
√∑

i,j,k f(i, j, k)
2 for a 3D discrete function f and ||f ||F =

√∑
i,j f(i, j)

2

for a 2D discrete function.

Finance data sets It turned out that all the wavelets performed equally well on the 1D finance
problems. For brevity the results will not be presented here.

Five different 2D data sets were studied all closely related to the stochastic local volatility
model (SLV) with Heston volatility dynamics. The SLV model is widely used in finance, especially
in foreign exchange markets. The model has to be calibrated to market data, and a key stage in
this calibration is solving for the probability density function (PDF) of the process [31]. The five
datasets are:

• SLV5: Calibrated PDF for parameter set 5 in [32] table 603, the Feller constant is 0.78.

• SLV17: Calibrated PDF for parameter set 17 in [32] table 603, the Feller constant is 0.35.

• SLV53: Calibrated PDF for parameter set 53 in [32] table 603, the Feller constant is 1.13,
but the correlation is 76%.

• Digital: Price of a digital call option driven by SLV.

• Call: Price of a call option driven by SLV.

PDFs with the Feller constant less than one have very high peaks near the zero boundary. The
SLV53 is strongly skewed due to the high correlation. The "digital" problem has a discontinuous
initial condition which is smoothed out (highly non-linearly) in time. The "call" problem is very
smooth - compression rates around 1% were achieved. For the data set "digital", it was very
difficult to get high precision. This was solved when the version 3 AMR was used. It was notable
that the interpolating boundary stencil version of lifted Donoho wavelet was very precise, but
added a lot of points. Furthermore, for both data sets Donoho’s interpolating wavelet with the
lower order boundary stencil had both a good compression rate and a small relative error.

Initially all the wavelets performed similarly for the three different SLV sets. Notably, the
lifted version of Donoho’s wavelet had poor performance. This changed when the adaptive inverse
transform was used. Donoho’s wavelet outperformed the lifted version of Donoho’s wavelet mostly
in compression rates.

We will examine SLV17 more closely since the SLV data sets presented more difficulties for the
wavelets than the "call" and "digital" sets, due to the fast changing surface.

In Figure 1 SLV 17 is shown at time step 0 (the initial solution), time step 26 and the final time
step 52 (note the change in scale of the Z axis). The approximation starts off with a high peak on
one point, the rest of the approximation is zero. This peak is located near the boundary, which
makes the data set interesting as nonsmoothness near the boundary is more difficult for wavelets
as there are no data points available beyond the boundary. The high peak spreads out through
time.
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Figure 1: SLV 17 through time.

Figure 2: Meshes of SLV 17 using Don(4,0,low).

In Figure 2 three different meshes corresponding to time steps 0, 26 and 52 are shown. The
wavelet used in this AMR is Donoho’s interpolating wavelet with the lower order boundary stencil,
primal order N = 4 and dual order Ñ = 0. Version 1 of AMR is used, this means that there is one
threshold value, namely 0.001. The figure captions shows that AMR is capable of refining the mesh
in case the nonsmooth area increases in time. In the figure percentages are shown. This is the
amount of points kept compared to the dense mesh on which the reference solutions were computed.
For J2 being the densest level and d the number of dimensions, the sparsity is determined by:

number of points kept
(2J2)d

× 100.

In order to visualise the performance of all the different wavelets, 5 tests have been compared.
Every wavelet is tested on the data for 2 different versions of the AMR, version 1 and version 3,
varying the threshold value 5 times, εthreshold = [10−1, 10−2, 10−3, 10−4, 10−5]. After each test the
maximum number of points and the maximum error over all time steps are kept. This results in
the plots of Figure 3. Version 1 and version 3 of AMR are evaluated. The figure shows that in
the first version of AMR all wavelets have difficulties in reducing the error, whilst this error is
significantly reduced in version 3 of AMR. Moreover, reducing the threshold results in more points
but not a higher accuracy for most wavelets, which is surprising. One would expect the wavelet
approximation to improve as the threshold is lowered and the number of points is increased. To
investigate this further it is convenient to observe the error at every time step, see Figure 4. There
are some remarkable features to be observed in this figure. Recall that we are tracking the maximal
error reached, not the average error. The maximal error occurs in the first time steps. Thereafter
the error of Donoho’s interpolating wavelet appears constant at 10−15. In reality it is not constant,
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Figure 3: Comparing all the wavelets on 2D SLV 17.

however the error is so small that computing the Forbenius norm drives the calculations below
machine precision.

Secondly, it appears that the maximum error is occurring in the second time step. SLV 17
starts with a sharp peak in one point. This leads to adding points around this point. However,
not enough neighbours are added. Because the shape is so irregular at that location, the surface
around it will change very fast, not only the closest neighbours will be effected. Version 3 of the
AMR successfully overcomes this. In this setting two different threshold values are used. The
first is static and is chosen beforehand, while the second is dynamic and depends on the current
approximation. The dynamic threshold is relative to the approximation surface. If a point is
thresholded by that value, a big square of points is added around the detail point. The bigger the
square the more accurate the following time step can be approximated, however this leads to the
addition of more points. The addition of points is not a problem as this occurs very infrequently,
only taking place if there is a very high detail coefficient. This can be observed in Figure 5: during
the first time steps, Donoho and lifted Donoho add more points than version 1 above (see Figure
4), but after only a few more time steps the sparsity of the two approaches is more or less equal.

Furthermore, lifted Donoho structurally uses more points than Donoho’s interpolating wavelet.
This is caused by the interpolating boundary stencil. In all test cases more points are added near
the boundaries for the interpolating boundary stencil. The polynomials used near the boundaries
are not good predictors for the function values there. In addition, when going to the lower levels,
e.g. level J1, points spatially far away from the boundary influence the boundary coefficients,
because the filter uses N points on one side of the boundary coefficient and at level J1 this can
be a large distance. In the case of SLV17, lifted Donoho also adds more points because the peak
is smoothed out so it will cover a larger area. This smoothing is caused by the update step, a
procedure which smooths out the irregular peaks and causes a larger area to have high detail
coefficients, even though the highest detail coefficient has a smaller absolute value. One beneficial
aspect of this smoothing is that lifted Donoho wavelet has less problems to adapt in the second
time step, mainly because the mesh is already less sparse.

However, although the interpolating boundary stencil is adding more points it works better
than the lower order boundary stencil for lifted Donoho wavelet. The lower order implementation
in lifted Donoho case is quite erratic, sometimes the accuracy is good and other times results are
very inaccurate. This is a prolem with the lifted Donoho wavelet and not for Donoho’s interpolating
wavelet.

The lifted Donoho wavelet has to use the boundary stencil implementation both for the smooth-
ing coefficients (update step) and for the detail coefficients, whereas Donoho’s wavelet only needs
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Figure 4: Version 1, error and sparsity for 2D SLV 17.

Figure 5: Version 3, error and sparsity for 2D SLV 17.
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to deal with boundary points for the detail coefficients. The Donoho’s wavelet only has a predict
step:

dj−1,m =
1

2
dj−1,m −

N∑
k=−N

pNk sj−1,m+k

whilst the lifted version also has an update step, for which boundary points need special care:{
dj−1,m = 1

2dj−1,m −
∑N

k=−N pNk sj−1,m+k

sj−1,k = sj−1,k + 2
∑Ñ

m=Ñ pÑ−mdj−1,k+m

Moreover, the update step works as a smoother, i.e., it averages the smoothing coefficients. Reduc-
ing the order near the boundary can cause an error. This error results in a high detail coefficient,
the high detail coefficient is then affecting the surrounding smoothing coefficients in the update
step. Hence, due to this smoothing this error will be transported through the grid.

Finally, in the error plots two different graphs for the lifted Donoho wavelet are depicted. In
testing we discovered that high errors for the lifted Donoho wavelet are caused by the update step
in the inverse transform. In this update step some detail coefficients gave contributions, whilst
they where not involved in the adaptive forward transform. They have contributions in the normal
inverse transform, because all the coefficients are filled even if they are not in the mesh. But it is
exactly the coefficients which did not have a contribution in the forward transform, but now do in
the inverse transform, that are causing the problems. Therefore, we made an adapted version of
the inverse transform, where detail coefficients only have a contribution in the update step if they
were included in the previous mesh. This leads to only changing the decompression/interpolation,
so both versions have the same meshes.

The adapted inverse transform is not specifically designed for the lifted version of Donoho’s
wavelet, it is for any second generation wavelet with an update step. In Figure 6 the results
for Swel(4,4,int) on all 2D finance data sets are given. Both the standard and adapted inverse
transform are calculated for each threshold. Major improvements are observed in the SLV sets.
Especially for SLV 53 the reduction in error is between 100x and 1000x. In the case of SLV17 it
is interesting to note that the adapted inverse has an accuracy better than 10−4 with a sparsity
of 7%. Meanwhile, the standard inverse transform needs around 17% of the grid points to reach
that accuracy. There is almost no difference in the "call" and "digital" data sets. For "call" the
error is slightly worse for the adapted inverse transform. Both versions of the inverse transform
are capable of keeping the error less than 10−3 whilst maintaining a high sparsity. For the other
versions of the lifted Donoho wavelets, we encountered similar results, for brevity they are not
included in this paper, for more information see [30].

Compressible CFD problem The simulation solves the equations of compressible Navier–
Stokes assuming an ideal gas equation of state using a finite volume discretisation. The method
uses the MUSCL technique for limiting the slopes of the primitive variables and computing the
left and right states at the interfaces between cells. An approximate Riemann solver is used to
compute the numerical fluxes at the interfaces between cells. For more information, see [33]. The
PDE computes pressure, which depends on the density, energy, x velocity, y velocity and z velocity
(in 3D). For the most part we will focus our discussion on the pressure. For a detailed treatment
of the other terms, please see [30].

In Figure 7 the pressure surface and heat plots are given at time steps 0, 257 and 514. The
solution starts of with a local blob, which results in a wave that interacts with the boundaries.
In Figure 8 the meshes at these time steps are shown. Donoho’s lower order wavelet is used to
generate the meshes. It is interesting to compare the heat plots with the meshes. Wavelets are well
known for their edge detection skills in image compression. That ability is observed in the mesh,
where points are added around the shock waves. Furthermore, although the shocks are spread over
the whole domain the wavelet is able to generate a sparse grid with only 19% of the points kept.

All wavelets are tested on pressure for version 1 and 3 of AMR. The results are very similar.
In Figure 9 the results of version 1 are shown. AMR is often only considered worthwhile in 2D if
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Figure 6: Comparing adapted and standard lifted Donoho on the 2D data sets price, digital, SLV5,
SLV17 and SLV53.

fewer than 40% of the points are kept2. Only Donoho’s interpolating wavelet with the lower order
boundary stencil implementation is capable of having this sparsity whilst having an error around
10−3.

In Figure 10 the Frobenius error and sparsity of pressure through time are given. The threshold
value is 10−3. The error plot shows that the error of Donoho’s wavelet is lower. Furthermore, the
standard inverse transform for lifted Donoho leads to a larger error than using the adapted inverse,
although the maximal relative Frobenius errors are similar.

The performance of the adapted inverse transform on all data sets for the lifted Donoho wavelet
is given in Figure 11. Although the differences are not big, the adapted version of the inverse
transform consistently results in a lower Frobenius error. For the other versions of the lifted
Donoho wavelets, we encountered similar results, for brevity they are not included in this paper,
for more information see [30].

The 3D CFD solution slices look very similar to the 2D data. In Figure 12 the overall perfor-
mance of the wavelets is shown. Only the results of version 1 are shown as they are very similar to
the results of version 3. When comparing the wavelets it is important to keep in mind that in 3D,
AMR is often only considered beneficial if a sparsity of 30% or less is achieved3. Like before, only
Donoho’s interpolating wavelet with the lower order boundary stencil is able to reach this sparsity
with a small Frobenius error.

In Figure 13, Don(4,0,low) and Swel(4,4,int) are plotted for every time step. The errors of
Donoho and lifted Donoho are very similar, except the normal inverse of lifted Donoho is giving
a higher error. Although the error behaves similar for Donoho and lifted Donoho, the number of
points needed to achieve this error is different. Lifted Donoho is adding many more points.

5 Conclusion and Discussion
Donoho’s interpolating wavelet and the lifted version of Donoho’s interpolating wavelet are both
used in the literature for adaptive mesh refinement. However, it is not clear which wavelet is the
best choice. Therefore, we tested various versions of these wavelets to investigate which wavelet
has the most stable results and performance in adaptive mesh refinement.

2This was a rule of thumb that emerged from work on the Paramesh package at NASA. Private communication
from Dr Kevin Olson, Paramesh co-author.

3This was a rule of thumb that emerged from work on the Paramesh package at NASA. Private communication
from Dr Kevin Olson, Paramesh co-author.
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Figure 7: 2D pressure through time.

Figure 8: Meshes of 2D pressure using Don(4,0,low).
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Figure 9: Comparing all the wavelets on 2D pressure.

Figure 10: Error and sparsity for 2D pressure with threshold 10−3.
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Figure 11: Comparing adapted and standard lifted Donoho on 2D CFD data.

Figure 12: Comparing all the wavelets on 3D pressure.
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Figure 13: Performance per time step on 3D pressure with threshold 10−3.

We tested different boundary stencil implementations, different versions of the AMR algorithm
and different orders (N). The tested orders are 4 and 6. Although N = 6 outperforms N = 4
sometimes, for all wavelets N = 4 ended up being the most stable choice.

Furthermore, for the lifted version of Donoho’s interpolating wavelet the interpolating boundary
stencil is the best boundary stencil implementation. It adds many points near the boundary due
to the long tails of the boundary wavelets, but is accurate for all test problems.

The lower order boundary stencil turned out to be the best performing boundary stencil im-
plementation for Donoho’s interpolating wavelet. It is always accurate, whilst having very good
sparsity. For example, for SLV 17 Donoho’s interpolating wavelet kept less than 5% of the points
with an error smaller than 10−4, a 20 fold sparsification.

Comparing Donoho’s wavelet and the lifted wavelet, we find that Donoho’s interpolating wavelet
with the lower order boundary stencil implementation is the best. The lifted Donoho’s wavelet
can compete with Donoho’s interpolating wavelet on PDEs with very local behaviour, i.e. when
irregular behaviour is very localised. However, when nonsmooth behaviour is occurring over the
whole domain, the lifted Donoho’s wavelet adds too many points. For example, for the 2D CFD
problem, in order to achieve an error smaller than 10−3 Donoho’s interpolating wavelet kept fewer
than 20% of the points, while the lifted version of Donoho’s interpolating wavelet needed 80% of
the points. This is caused partly by the update step, which smooths out the function, hence local
behaviour becomes less local as the irregular behaviour is covering a larger area. Another cause is
the interpolating boundary stencil. Due to the long tail, on lower levels, behaviour further away
from the boundary influences the boundary wavelets.
The lifted Donoho’s wavelet is a second generation wavelet with an update step. During testing
it is noted that using an adapted inverse transform reduces the error significantly. This change in
the inverse transform is only for wavelets with an update step, hence it does not affect Donoho’s
interpolating wavelet.

Although the lifted version of Donoho’s interpolating wavelet is presented in the literature as an
improvement over Donoho’s interpolating wavelet since it increases the dual vanishing moments,
it does not appear to be an improvement for AMR. The update step causes the wavelet to predict
the function values less accurately, which results in worse performance for AMR.

Concluding, throughout the different tests, Donoho’s interpolating wavelet with the lower order
boundary stencil is the most stable and best performing wavelet for equidistant meshes. This is
remarkable as the lower order boundary stencil is not commonly used in the literature.
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