Implied Volatility using Python’s Pandas Library

Brian Spector

Thalesians Meetup London
15th January 2014
Overview

• Motivation
• Python
• Pandas
• Implied Volatility
 – Timings in python
 – Different Volatility Curves
 – Fitting data points
Python

• Dynamically typed language
• Uses white spaces (as oppose to brackets) for control statements.
• Has grown in popularity:

<table>
<thead>
<tr>
<th>Programming Language</th>
<th>2014</th>
<th>2009</th>
<th>2004</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python Ranking</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>22</td>
</tr>
</tbody>
</table>

Python

• Why use python?
 – Cheap
 – Easy to learn
 – Powerful
Python

• Why use python?
 – Cheap
 – Easy to learn
 – Powerful

• Why use python over R?
 – “I would rather do math in a programming language than programming in a math language.”
Python

• What python has:
 – Many built-in powerful packages
 – OO programming
 • Classes
 • Base + Derived Classes
 – Plotting

• What python does not have:
 – Operator Overloading
 – Multiple constructors
 – Speed
 – Pointers
 – ???
Numpy

• Has made numerical computing much easier in recent years.
• Numpy matrices / arrays
• Numpy.linalg
• Behind many of these functions are LAPACK + BLAS!
Scipy

- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse Eigenvalue Problems with ARPACK
- Compressed Sparse Graph Routines scipy.sparse.csgraph
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
nag4py

• Built on top of NAG C Library + Documentation
• 1600 NAG functions easily accessible from python
• 25 examples programs to help users call NAG functions

from nag4py.c05 import c05ayc
from nag4py.util import NagError,Nag_Comm
Pandas

• Data Analysis Package
• Many nice built in functions
• Common tools:
 – Series / DataFrame
 – Reading + Writing CSVs
 – Indexing, missing data, reshaping
 – Common time series functionality

(Examples)
Implied Volatility

- Black Scholes Formula for pricing a call/put option is a function of 6 variables:
 \[C(S_0, K, T, \sigma, r, d) = S_0 N(d_1) - Ke^{-rT}N(d_2) \]

- Where
 \[d_{1,2} = \frac{1}{\sigma \sqrt{T}} \left[ln \left(\frac{S}{K} \right) + T \left(r \pm \frac{\sigma^2}{2} \right) \right] \]
 \[N(x) = \text{Standard Normal CDF} \]
Implied Volatility

• We can observe the following in the market:
 • \(C(S_0, K, T, \sigma, r, d) = C \)
 • But what is \(\sigma \)?
 • \(\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market\ Price \)
Implied Volatility

• We can observe the following in the market:
 • $C(S_0, K, T, \sigma, r, d) = C$
 • But what is σ?
 • $\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market\ Price$
 • Does σ_{imp} exist?
Implied Volatility

• We can observe the following in the market:
 • $C(S_0, K, T, \sigma, r, d) = C$
 • But what is σ?
 • $\sigma_{imp} \rightarrow C_{BS}(S_0, K, T, \sigma_{imp}, r, d) = Market\ Price$
 • Does σ_{imp} exist?
 – Yes
 (Examples)
Implied Volatility – Different Curves?
Implied Volatility – Different Curves?

• No hyphen or letter present = Composite
 A = AMEX American Stock Exchange
 B = BOX Boston Stock Exchange - Options
 E = CBOE Chicago Board Options Exchange
 I = BATS
 J = NASDAQ OMX BX
 O = NASDAQ OMX
 P = NYSE Arca
 X = PHLX Philadelphia Stock Exchange
 Y = C2 Exchange
 4 = Miami Options Exchange
 8 = ISE International Securities Exchange
Implied Volatility

• Reasons for skews/smiles?
 – Risk Preferences
 – Fat tailed distributions
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td></td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td></td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~180 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td></td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~180 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~15 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td></td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Timing</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>fsolve + python BSM</td>
<td>~180 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~15 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td></td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~180 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~15 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td>~.29 seconds</td>
</tr>
</tbody>
</table>
Implied Volatility Timings

<table>
<thead>
<tr>
<th>Method</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsolve + python BSM</td>
<td>~180 seconds</td>
</tr>
<tr>
<td>fsolve + NAG BSM</td>
<td>~15 seconds</td>
</tr>
<tr>
<td>nag4py</td>
<td>~10 seconds</td>
</tr>
<tr>
<td>NAG C</td>
<td>~.29 seconds</td>
</tr>
</tbody>
</table>

- Derivatives?
- We have the derivative, vega
 - \(\frac{\partial C}{\partial \sigma} = S \times T \times N'(d_1) \)
Fitting Data Points

• In our script we had $k = l = 3$...
 – What if we try different values?
Fitting Data Points

• In our script we had $k = l = 3$...
 – What if we try different values?
 • Poor results, can we do better?
Questions?

- Further reading see:
 - http://pandas.pydata.org/
 - http://www.nag.co.uk/python.asp