Adjoint Parameter Calibration
(in Computational Finance)
The Art of Differentiating Computer Programs1

Uwe Naumann

Software and Tools for Computational Engineering
RWTH Aachen University, Germany
and
The Numerical Algorithms Group Ltd., Oxford, UK

1U. Naumann: \textit{The Art of Differentiating Computer Programs}, SIAM 2011.
To appear.
Solve

\[
\min_{x \in \mathbb{R}^n} G(x, r, y) = \sum_{i=0}^{m-1} (y_i - f(x, r_i))^2 \quad \text{s.t.} \quad l \leq c(x) \leq u
\]

using NAG Library routines (focus on first-order).

- \(\nabla G(x)\) by adjoint AD – why and how?
- (Simplified) Live case study
- Toward an adjoint NAG Library
- Adjoint AD is not plug-and-play!
Let $f(x, r_i)$ compute, for example, the price of an asset at some reference point r_i, e.g. time. Consider

$$F(x, r, y) = (y_i - f(x, r_i))_{i=0,...,m}$$

$$G(x, r, y) = \langle F(x, r, y), F(x, r, y) \rangle = \sum_{i=0}^{m-1} (y_i - f(x, r_i))^2$$

for given $(r_i, y_i)_{i=0,...,m-1}$

The NAG Library provides

- least-squares solvers (e.g., e04gbc) asking for $(F : \mathbb{R}^n \to \mathbb{R}^m, \nabla F \in \mathbb{R}^{m \times n})$
- nonlinear programing solvers (e.g., e04dgc) asking for $(G, \nabla G \in \mathbb{R}^n)$
User needs to provide

```c
void objfun (int n, const double x[],
             double *objf, double g[], ...)
```

Let $G(x, r, y)$ be implemented as

```c
void G (int m, int n, const double x[],
        const double r[],
        const double y[],
        double *objf)
```

Gradient $\nabla_x G$ by ...

- hand-coding?
- symbolic differentiation using computer algebra systems?
- finite difference quotients?
Fitting a vector of n parameters $\mathbf{x} \in \mathbb{R}^n$ of a polynomial

$$f(\mathbf{x}, r_i) = \sum_{j=0}^{n-1} x_j \cdot r_i^j$$

of degree $n - 1$ to given data $\mathbf{y} \in \mathbb{R}^m$ at reference points $\mathbf{r} \in \mathbb{R}^m$ yields the objective

$$G(\mathbf{x}, \mathbf{r}, \mathbf{y}) = \sum_{i=0}^{m-1} (y_i - f(\mathbf{x}, r_i))^2$$

We time 5000 iterations of e04dgc with $\nabla G \in \mathbb{R}^n$ approximated by central finite differences.

Will get back to this later ... :-(((((}
Motivation:

- Hand-coding can be tedious and error-prone; Derivative code needs to be kept manually in line with original code.
- Computer algebra systems are of (very) limited help.
- Finite differences deliver inaccurate sensitivity information; convergence of the optimization methods can suffer. Each input needs to be perturbed individually.

The tangent-linear (also forward) mode of AD computes for $F : \mathbb{R}^n \to \mathbb{R}^m$ and $x, x^{(1)} \in \mathbb{R}^n$

$$\mathbb{R}^m \ni y^{(1)} = \nabla F \cdot x^{(1)}$$

and hence the Jacobian at $O(n) \cdot \text{Cost}(F)$ with machine accuracy by letting $x^{(1)}$ range over the Cartesian basis vectors in \mathbb{R}^n.
active type `dco::t1s::type` contains function values v and directional derivatives $v^{(1)}$

operators and intrinsic functions are overloaded for `dco::t1s::type`

type of active variables needs to be changed by the user to `dco::t1s::type`; for example,

```cpp
void G (int m, int n, const double x[],
        const double r[], const double y[],
        double *objf)
```

becomes

```cpp
void G (int m, int n, const dco::t1s::type x[],
        const double r[], const double y[],
        dco::t1s::type *objf)
```
```cpp
void objfun ( int n, const double x[],
             double *objf, double g[], ... )

dco::tls::type *tls_x, tls_objf;
...
for ( int i=0; i<n; i++)
    tls_x[i]=x[i];
...
for ( int i=0; i<n; i++) {
    set(tls_x[i],1.0,1);
    G(m,n,tls_x,r,y,&tls_objf);
    set(tls_x[i],0.0,1);
    get(tls_objf,g[i],1);
}
...}
```
same parameter calibration problem ...

We time 5000 iterations of e04dgc with $\nabla G \in \mathbb{R}^n$ computed by dco in first-order scalar tangent-linear mode.

Will get back to this later ... :-(((
The adjoint (also: reverse) mode of AD computes for $y(1) \in \mathbb{R}^m$

$$\mathbb{R}^n \ni x(1) = \nabla F^T \cdot y(1)$$

and hence the Jacobian at $O(m) \cdot \text{Cost}(F)$ with machine accuracy by letting $y(1)$ range over the Cartesian basis vectors in \mathbb{R}^m.

Computational cost is $\mathcal{R} \cdot m \cdot \text{Cost}(F)$ where, typically, $\mathcal{R} = [50, \ldots, 3]$

Adjoint AD yields cheap ($O(1) \cdot \text{Cost}(G)$) gradients (and cheap projected Hessians.)
Conservative estimates for dco:

- \(\text{Cost}(\nabla G \cdot x^{(1)}) = 1.25 \cdot \text{Cost}(G) \) in tangent-linear mode
- \(\text{Cost}(\nabla G) = 10 \cdot \text{Cost}(G) \) in adjoint mode.

The adjoint NLP solver outperforms the tangent-linear NLP solver for \(n > 8 \).

For \(n = k \cdot 8 \), we observe a speedup by a factor of \(k \).
active type dco::a1s::type contains function values v and virtual address $&v$ of a recording of the current variable

operators and intrinsic functions are overloaded for dco::a1s::type to record a tape

type of active variables needs to be changed by the user to dco::a1s::type; for example,

```cpp
void G (int m, int n, const dco::a1s::type x[],
       const double r[], const double y[],
       dco::a1s::type *objf)
```

adjoints are propagated from outputs to inputs by interpretation of the tape
```cpp
void objfun ( int n, const double x[],
              double *objf, double g[] ), ...
dco::als::type *als_x, als_objf; ...
tape *t=dco::als::tape::create();
for ( int i=0; i<n; i++) {
    als_x[i]=x[i]; t->register_variable(als_x[i]);
}
G(m,n,als_x,r,y,&als_objf) ;
get(als_objf,*objf);
set(als_objf,1.0,-1);
t->interpret_adjoint();
for ( int i=0; i<n; i++) get(als_x[i],g[i],-1);
...
dco::als::tape::remove(t) ;
```
same parameter calibration problem ...

5000 iterations of e04dgc with $\nabla G \in \mathbb{R}^n$ computed by central finite differences or by dco’s first-order scalar tangent-linear mode took > 9 and > 7 minutes, respectively.

Well, let us try adjoint mode ... (6 sec. :-))))
Algorithmic Differentiation of \(F = \circ_{i=1}^{k} F_i \) where \(F_i : \mathbb{R}^{n_i} \rightarrow \mathbb{R}^{m_i} \)

\[
\begin{align*}
\mathbf{y} &= F(\mathbf{x}) = \ldots \\
(F_3 \circ F_2 \circ F_1)(\mathbf{x}) &= F'_3(F'_2(F'_1 \cdot \mathbf{x}^{(1)})) \\
F' &\text{ at } \text{Cost}(F) \\
F' &\text{ at } O(n) \cdot \text{Cost}(F) \\
F' &\text{ at } O(m) \cdot \text{Cost}(F)
\end{align*}
\]
Algorithmic Differentiation (AD) delivers exact (up to machine accuracy) first and higher derivatives of implementations of $F : \mathbb{R}^n \to \mathbb{R}^m$ as computer programs.

or

We differentiate what you implemented – not what you possibly intended to implement.

Assumption: The given implementation of F is d times continuously differentiable at all points of interest.

Fact: AD (also known as Automatic Differentiation) is not fully automatic and never will be except for simple cases.
Is it derivatives you want?

\[y = f(x) = x^2 + 0.1 \cdot \sin(100 \times x) \]
Do derivatives exist?
Inside of a larger parameter estimation problem, we use the NAG library routine

```c
void nag_heston_price(..., s[m_s], t[m_t],
                        sigmav, corr, eta, var0, p[m] ...)
```

to compute \(m \equiv m_s \cdot m_t \) prices \(p \in \mathbb{R}^m \) of a European option using Heston’s stochastic volatility model for \(m_s \) given strike prices \(s \in \mathbb{R}^{m_s} \) and \(m_t \) times to expiry \(t \in \mathbb{R}^{m_t} \).

The four Heston parameters sigmav, corr, eta, and var0 depend on \(n \) global parameters to be calibrated.

An adjoint version of `nag_heston_price` is provided. dco supports the use of such external adjoint routines.
AD is not Plug-and-Play!

- data flow reversal in adjoint mode (checkpointing)
- performance through exploitation of structure and sparsity
- handling and exploitation of parallelism (ampi)
- coupling with source transformation tools (dcc)
- black-box library routines

⇒ many technical and combinatorial² problems

⇒ AD (programming) tools require educated users

You need algorithmic differentiation if

- finite differences cannot be trusted
- finite differences or exact forward sensitivities are too expensive
- you are un(able/willing) to build and solve the adjoint system manually

For large simulation codes in C++ you need to invest several (wo)man months to reach a sustained $\mathcal{R} < 20$.

Maintenance of the adjoint model is crucial and is supported tremendously by the use of AD tools.

We can help you to get started.