HSBC EQUITY QUANTITATIVE RESEARCH

Portfolio Maximum Entropy and Sampling Error Control

Ely Klepfish*
Quantitative Analyst
HSBC Bank plc
+44 20 799 16719 ely.klepfish@hsbcib.com

NAG Wilmott Quant Event
23 June 2011

*Employed by a non-US affiliate of HSBC Securities (USA) Inc, and is not registered/qualified pursuant to FINRA regulations
View HSBC Global Research at: http://www.research.hsbc.com
Issuer of report: HSBC Bank plc

Disclaimer & Disclosures
This report must be read with the disclosures and the analyst certifications in the Disclosure appendix, and with the Disclaimer, which forms part of it
Diversification – Naïve, Classical, Quantum

➢ **Naïve**

“1/3 in Land, 1/3 in merchandise, 1/3 in ready to hand” – Rabbi Isaak bar Aha (IV century AD, Babylonian Talmud - quoted in V De Miguel, L Garlappi, R Uppal, see reference below)– A **craftsman solution**

➢ **Classical** – why investing equally in good and bad?

Experience + Theory = Science

Science + Efficiency = Industry

Optimisation – taking investment from craft to industry

- **Objective** – maximum future value of invested capital
 - The concept of efficiency – not all portfolios are equal, some are worse – those with the same expected return but with higher risk
 - Optimisation enables investors to avoid these unfortunate choices by selecting the among portfolios with the same expected return the one with the lowest risk

- **Optimisation inputs** – security expected returns, estimated risk return inter-dependence (covariance) – mainly estimated from history

- **Optimised portfolio** (in theory) – higher long-term returns, lower transaction costs, accommodates holding restrictions (keeps regulators and trustees happy)
The conveyor belt assembly of investment industry

Harry Markowitz meets Henry Ford

Returns’ history

Expected returns
Expected risk
Constraints

Optimiser
Math Programming

Economics, portfolio theory,
Risk modelling,
Experience, wisdom

Source: Wikimedia Commons
Post-modern portfolio theory

Not a conspiracy of latent Luddites

- Richard Michaud (Financial Analyst Journal, 45, 1989) warns of MV optimisation’s tendency to maximise the effects of the errors in the inputs.

- David Turkington (Canadian Investment review 17 May 2010) although in favour of the optimised portfolio selection, acknowledges studies indicating that equal-weighted allocation of capital is intuitive and rewarding.

- Victor DeMiguel, Lorenzo Garlappi, Raman Uppal (Review of Financial Studies, 22 (5), 2009)

 Tested 14 models in 7 data sets and found no statistically significant Sharpe ratio outperformance relative to the equally weighted portfolio.
Sampling error – the core cause of the problem

Sampled returns represent inadequately the whole ensemble of possible returns. A sample selected at a different time, under different conditions might produce significantly different results.

Unreliable estimation of input parameters for optimisation

Optimisers following wrong estimations recommend wrong holdings

Minimise dependency on sampling errors
Limiting sampling errors – constraints

- **Constraints – limiting exposure – not following blindly the advice of the expected return versus expected risk selection**

 Return uncertainty requires the risk to be controlled. If not for the uncertainty then the highest expected return ought to be allocated the whole capital available

 Holding constraints reflect uncertainty with respect to the estimation of risk (another way to say *uncertainty*)

 Equally-weighted diversification expresses ultimate disbelief in the estimate, including estimate of the uncertainty

- **Jagannathan and Ma** (The Journal of Finance, 58, 4, 2003) – even imposition of wrong in population non-negativity constraints reduces the realised risk (for sample covariance matrix)
Taking uncertainty seriously – quantum correction

- Maximum alpha
 - full confidence in return forecast
- M-V Optimised Portfolio
 - full confidence in estimated utility
- Minimum uncertainty (variance or TE)
 - indifferent to alpha
- Maximum sample indifference
 - indifferent to estimated utility

Sample history

High confidence

Low confidence

Classical efficiency

Quantum efficiency

Alpha confidence

Sample confidence
Conditional optimisation defines efficiency

- **Mean variance efficiency**
 - Conditional minimum of the deviation (TE) from the benchmark
 - Return-uncertainty minimised *conditioned* by return target

- **Sampling error efficiency**
 - Sampling sensitivity minimised *conditioned* by MV utility target
 - Conditional minimum of the deviation from the sample indifferent portfolio

- **Maximum expected return**
Building blocks

- Measure of distance

- Definition of level of confidence

- Definition of the sampling-indifferent portfolio (shrinkage target)
A measure of distance

- Bera and Park (2008) propose to use \textbf{Kullback-Leibler cross-entropy}

\[X(w, q) = \sum_{i}^{N} w_i \log \left(\frac{w_i}{q_i} \right) \]

optimised portfolio \(w \), shrinkage target \(q \)

- The sum of weighted logarithms is never negative. It reaches zero for portfolio weights equal to the shrinkage target weights

- For an equally weighted shrinkage target \(X(w, q) \) is the (-) Shannon information entropy

- Additive, global, sample-independent, risk-model independent

- Possible to generalise to short holdings
Defining level of confidence

1. Estimate expected return and risk according to the sample
2. Generate re-sampling of the returns and for each of the re-sampled histories of returns estimate expected return and risk
3. Calculate the optimal mean variance portfolio for the empirical sample and for each of the bootstrap generated virtual histories
4. Substitute empirical sample mean and variance-covariance into each set of portfolio weights and obtain re-sampling of mean-variance utility. By construction the largest utility is obtained for the optimisation weights of the empirical sample
5. Estimate the distribution of the maximum utility values of item 4
6. Assess the utility value corresponding to the percentage of confidence – an inverse function of the cumulative distribution
Utility function distribution (from bootstrapping of a minimum variance solution)

Fig 1-a. Utility distribution density

Fig 1-b. Cumulative distribution for confidence interval

Source HSBC
Conditional minimisation of cross-entropy

- For a given shrinkage target q_i, the minimum cross entropy solution is given by

$$w_{iCE} = \arg \min_w \left[\sum w_i \log \left(\frac{w_i}{q_i} \right) \right]$$

subject to the usual holding constraints and to an additional defined by the lowest acceptable value of utility (according to an investor’s confidence) $-U_0$

$$w_i \mu_i - \frac{\lambda}{2} w_i \Sigma_{ij} w_j \geq U_0; \quad (\mu, \Sigma)$$

are the sample-estimated returns and covariance matrix

The minimisation is done using NAG routine E04UC

Special thanks for putting together the NAG toolbox for Matlab
Diversification effect of conditional cross-entropy minimisation – country allocation – MSCI country equity indices, sample (60 m) - estimated covariance matrix

Source HSBC
Small utility costs for increased diversification

Fig 3-a. Estimated utility
(minimum variance optimisation)

Fig 3-b. 6 months after optimised rebalancing – lower confidence solutions closing the utility gap

Source HSBC
Reduced downside risk – Mean-Variance optimisation and conditional minimum cross-entropy. Comparison of 6-month losses – (positive value – smaller loss)

Fig 4. Conditional minimum cross-entropy (for stated confidence levels) vs Mean-Variance

Source HSBC
Beyond minimum risk

Fig 5. Ten year performance
Mean-Variance optimisation with expected return defined as exponentially weighted mean of the past 60 months

Source HSBC
Minimum cross-entropy solution captures Mean-Variance gains and moderates its losses

Fig 6-a. Minimum cross-entropy solution performance relative to MV solution

Fig 6-b. Minimum cross-entropy solution performance relative to equally-weighted allocation

Source HSBC
Realised tracking error and information ratio relative to the equally weighted allocation

Fig 7-a. TE

Positive IR of the MV (useful sample information) is maintained in the minimum cross-entropy solution

Fig.7-b

IR

Source HSBC
Stock level portfolio optimisation – a European Value-Momentum fund

- Return expectation – combined earnings yield and three months price momentum
- Benchmark weights for standard optimisation – DJ Stoxx 600
- Market cap-weighted benchmark underperforms Alpha (top decile selected) fund (Fig. 8)
- Comparison of Alpha with equally weighted allocation of Stoxx 600 constituents (EW) indicates negative market cap bias (Fig. 9)

Fig. 8

<table>
<thead>
<tr>
<th>Total Return (%)</th>
<th>Benchmark</th>
<th>Alpha Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9

<table>
<thead>
<tr>
<th>Total Return (%)</th>
<th>EW</th>
<th>Alpha Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-00</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Dec-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: HSBC
Mean-variance optimisation

- Small enhancement of performance (Fig.10)
- High estimated tracking error, which nonetheless understates the realised error (Fig.11)
- Tuning to decrease tracking error will bring the performance even nearer to the weak benchmark

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>MV</th>
<th>Alpha Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average return p/a</td>
<td>4%</td>
<td>7%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Source: HSBC
Enhanced diversification with equally-weighted target

- Sample ‘indifferent’ target – equally weighted (weakening market cap bias and sample sensitivity)
- Utility limit 85% of the mean-variance optimised portfolio
- CE solution – minimum (cross-entropy) distance to the equally weighted target that satisfies at least 85% of mean-variance (maximum possible) utility
- Portfolio variance is estimated using factor risk model (Northfield).

- Minimum required utility limit is arbitrary. Could not re-generate risk model for re-sampled returns
- From previous example – higher limit corresponds to higher confidence, maximum utility – MV solution 100% confidence
- Outlook for future research – shrunk (e.g. Ledoit-Wolf method) sample covariance matrix

Fig. 12 – CE solution closer to the Stoxx DJ 600 benchmark

Source: HSBC
Performance – short and long term

Fig 13-a.
1 m re-balancing

Fig. 13-b.
6 m re-balancing

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>MV</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average return p/a</td>
<td>4%</td>
<td>7%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Source: HSBC
Alpha information maintained

➢ The proposed solution maintains essential stock selection and risk modelling information

Fig 14 – *Realised* information ratio, for monthly returns

Source: HSBC
Summary

I. **Ideology** – extension of Markowitz’ programme – equilibrium between the desired and the feared, between classical efficiency and indifference to estimation errors;
 first quantum correction (hopefully)

II. **Practicality**
1. Introduction of a sample independent measure of difference between two distributions of capital
2. Shrinkage applied directly to portfolio weights – can be used in testing and comparing risk models
3. Strict multiple holding constraints can be replaced by a single **GLOBAL** limit on cross-entropy
 (a straightforward extension of optimiser objective function)

III. **Results**
1. Enhanced diversification by introducing a single global constraint on a minimum acceptable value of utility
2. Preservation of the essential alpha information
3. Reduction of realised risk and enhanced out-of-sample performance
Disclosure appendix

Analyst Certification

The following analyst(s), economist(s), and/or strategist(s) who is(are) primarily responsible for this report, certifies(y) that the opinion(s) on the subject security(ies) or issuer(s) and/or any other views or forecasts expressed herein accurately reflect their personal view(s) and that no part of their compensation was, is or will be directly or indirectly related to the specific recommendation(s) or views contained in this research report: Elyakum Klepfish

Important Disclosures

This document has been prepared and is being distributed by the Research Department of HSBC and is intended solely for the clients of HSBC and is not for publication to other persons, whether through the press or by other means.

This document is for information purposes only and it should not be regarded as an offer to sell or as a solicitation of an offer to buy the securities or other investment products mentioned in it and/or to participate in any trading strategy. Advice in this document is general and should not be construed as personal advice, given it has been prepared without taking account of the objectives, financial situation or needs of any particular investor. Accordingly, investors should, before acting on the advice, consider the appropriateness of the advice, having regard to their objectives, financial situation and needs. If necessary, seek professional investment and tax advice.

Certain investment products mentioned in this document may not be eligible for sale in some states or countries, and they may not be suitable for all types of investors. Investors should consult with their HSBC representative regarding the suitability of the investment products mentioned in this document and take into account their specific investment objectives, financial situation or particular needs before making a commitment to purchase investment products.

The value of and the income produced by the investment products mentioned in this document may fluctuate, so that an investor may get back less than originally invested. Certain high-volatility investments can be subject to sudden and large falls in value that could equal or exceed the amount invested. Value and income from investment products may be adversely affected by exchange rates, interest rates, or other factors. Past performance of a particular investment product is not indicative of future results.

Analysts, economists, and strategists are paid in part by reference to the profitability of HSBC which includes investment banking revenues.

For disclosures in respect of any company mentioned in this report, please see the most recently published report on that company available at www.hsbcnet.com/research.

* HSBC Legal Entities are listed in the Disclaimer below.

Additional disclosures

1. This report is dated as at 23 June 2011.
2. All market data included in this report are dated as at close 24 June 2011, unless otherwise indicated in the report.
3. HSBC has procedures in place to identify and manage any potential conflicts of interest that arise in connection with its Research business. HSBC's analysts and its other staff who are involved in the preparation and dissemination of Research operate and have a management reporting line independent of HSBC's Investment Banking business. Information Barrier procedures are in place between the Investment Banking and Research businesses to ensure that any confidential and/or price sensitive information is handled in an appropriate manner.