Matrix functions, correlation matrices, and news from NAG

Craig Lucas

June 2011
Contents

- Matrix Functions
- Nearest Correlation Matrices
 - Improvements to our first routine
 - Weights and forcing positive definiteness
 - Factor Model
- Recent News and Coming Soon from NAG
NAG Products

- Libraries & Toolbox:
 - NAG Fortran Library, NAG C Library
 - NAG Library for SMP & Multi-core
 - NAG Toolbox for MATLAB, NAG Library for .NET

- Callable from many environments
 - C++, Excel, F#, Java, Python, R,...

- Library code written and contributed by some of the world’s most renowned mathematicians and computer scientists

- Algorithmic development in house and in collaboration with academia and industry

- NAG Fortran Compiler and Fortran Builder
 - The World’s Best Checking Compiler... essential for building a Library!
NAG Library and Toolbox Contents

- Root Finding
- Summation of Series
- Quadrature
- Ordinary Differential Equations
- Partial Differential Equations
- Numerical Differentiation
- Integral Equations
- Mesh Generation
- Interpolation
- Curve and Surface Fitting
- Optimization
- Approximations of Special Functions
- Dense Linear Algebra
- Sparse Linear Algebra
- Correlation & Regression Analysis
- Multivariate Methods
- Analysis of Variance
- Random Number Generators
- Univariate Estimation
- Nonparametric Statistics
- Smoothing in Statistics
- Contingency Table Analysis
- Survival Analysis
- Time Series Analysis
- Operations Research
MATRIX FUNCTIONS
Matrix Functions

- Matrix functions examples:
 - A inverse
 - exp(A)
 - sqrt(A)

- NAG working with Prof Nick Higham under a KTP Partnership. Associate Edvin Deadman.

- Developing a suite of codes, and making improvements to state of the art.

- Nick Higham also has €2M EU grant for more algorithm development.
Matrix Functions - Definition

Several definitions, one is:

Suppose the function f has Taylor series expansion:

$$ f(z) = \sum_{k=0}^{\infty} a_k (z - \alpha)^k, \quad a_k = \frac{f^{(k)}(\alpha)}{k!} $$

with radius of convergence r, then if $\max |\lambda_i - \alpha| < r$ we have:

$$ f(A) = \sum_{k=0}^{\infty} a_k (A - \alpha I)^k $$

f could be sin, exp, ... or user defined.
Matrix Functions Examples

- Solution of differential equations:
 - exponential
 - trigonometric functions

- Finance – transition matrices describe evolution from one time-step to the next:
 - p^{th} roots
 - logarithm
 - exponential

- Population dynamics, NMR spectroscopy, optics, graphs and maps ...
Matrix Functions Examples

- Vectors \mathbf{v}_{2011} and \mathbf{v}_{2010} represent credit states or stock prices in 2011 and 2010.
 \[\mathbf{v}_{2011} = \mathbf{P} \mathbf{v}_{2010} \]
- \mathbf{P} is the *transition matrix*.
- Using $\mathbf{P}^{1/2}$ enables predictions to be made at 6-monthly intervals.
- *Transition intensity matrix* \mathbf{Q} satisfies
 \[\mathbf{P}(t) = e^{\mathbf{Q}t} \]
The Schur-Parlett Algorithm

- New routines in the NAG Library based on Schur-Parlett Algorithm.
- General purpose algorithm for computing a function of a complex matrix, $f(A)$ (Davies & Higham, 2003)
- Using for Matrix sine, cosine, exponential, sinh, cosh
- And an adapted algorithm for matrix logarithm
The Schur-Parlett Algorithm

1. Convert into Schur form.
 □ If a real matrix has complex eigenvalues then we have to work in complex arithmetic.

2. Reorder the Schur decomposition to group eigenvalues of similar size into blocks, T_{ii}

3. Compute $f(T_{ii})$ via Taylor series

4. Compute off-diagonal blocks via a Parlett recurrence

5. Transform back to original form
The Schur-Parlett Algorithm

Original matrix

Diagonal blocks
(Taylor series)

Off diagonals
(Parlett recurrence)

Schur form
The Schur-Parlett Algorithm

- As we use a Taylor series we need an arbitrary number of derivatives, $f^{(k)}(x)$ for all k and x.
- User supplied functions, therefore, require numerical differentiation. (Unless passed by user.)
- Implemented Lyness & Moler (1967) which is based on Cauchy’s theorem.
- Importantly an error estimate is returned.
- Will also be a new user callable routine.
Matrix Functions in the NAG Library

- **Current routines:**
 - Matrix exponential - scaling and squaring
 - Symmetric/Hermitian exponential and general matrix function.

- **Coming soon:**
 - Real and complex matrix sine, cosine, exponential, sinh, cosh
 - Real and complex matrix logarithm
 - Function of a general matrix, with or without user supplied derivatives
Matrix Functions in the NAG Library

- Coming over the next 1-3 years.
 - norm / condition number estimation
 - square root
 - p^{th} root
 - ‘action of exponential’ on a vector, $\exp(A)v$
 - other algorithms for exp, sin and cos

- You set the priorities!
NEAREST CORRELATION MATRICES
Correlation Matrices

- An n-by-n matrix is a *Correlation Matrix* if
 - it is symmetric
 - has ones on the diagonal
 - its eigenvalues are nonnegative (positive semidefinite)

- The off diagonal entries are bounded by -1 and 1
Correlation Matrices

- Empirical correlation matrices are often not mathematically true due to inconsistent or missing data.
- Thus we are required to find the nearest correlation matrix.
- For example, we need to solve the convex optimization problem:

\[
\min \frac{1}{2} \|G - X\|_F^2
\]

- to find \(X\), a true correlation matrix, where \(G\) is an approximate correlation matrix.
Nearest Correlation Matrices

- G02AA applies an inexact Newton method to a dual (unconstrained) formulation of this problem.
- Algorithm by Qi and Sun (2006). It applies the improvements suggested by Rüdiger Borsdorf* and Higham (2010). *NAG funded PhD.
- It is globally and quadratic convergent.

- We have made some improvements ...
Nearest Correlation Matrices

- Code and algorithmic improvements

- Improvements depend on data properties

![Bar chart showing time (secs) vs. n for FL22, CL09, FL23, and Coming soon (est)]

2 x Improvement
Weights and Eigenvalues

- New routine, G02AB, extending G02AA, to introduction weights and forcing of the computed NCM to be positive definite.

- Finds the nearest correlation matrix X by minimizing the following, where G is an approximate correlation matrix, using the weighted Frobenius norm:

$$\frac{1}{2} \left\| W^{\frac{1}{2}} (G - X) W^{\frac{1}{2}} \right\|_F^2$$

- where W is diagonal.
Weights and Eigenvalues

- **The effect of W:**

\[A = \begin{bmatrix} 0.4218 & 0.6557 & 0.6787 & 0.6555 \\ 0.9157 & 0.3571 & 0.7577 & 0.1712 \\ 0.7922 & 0.8491 & 0.7431 & 0.7060 \\ 0.9595 & 0.9340 & 0.3922 & 0.0318 \end{bmatrix} \]

\[W = \text{diag}([10,10,1,1]) \]

\[W*A*W = \begin{bmatrix} 42.1761 & 65.5741 & 6.7874 & 6.5548 \\ 91.5736 & 35.7123 & 7.5774 & 1.7119 \\ 7.9221 & 8.4913 & 0.7431 & 0.7060 \\ 9.5949 & 9.3399 & 0.3922 & 0.0318 \end{bmatrix} \]

Whole rows/cols weighted by \(w_i \)

Elements weighted by \(w_i * w_j \)
Weights and Eigenvalues

- Note that if the weights vary by several orders of magnitude from one another the algorithm may fail to converge.

- You can optionally specify a lower bound on the eigenvalues of the computed correlation matrix.

- Forcing the matrix to be positive definite, with minimum eigenvalue $0 < \alpha < 1$.
Other weighting possibilities

- Suppose some elements are known to be true.
- Hardamard weighting to fix elements

\[
\min \frac{1}{2} \| H \circ (G - X) \|_F^2
\]

- Element-wise multiplication by \(H \).
- Planned for next release.
Other weighting possibilities

- “Alternating projections” algorithm.
- Project onto convex sets: semidefinite and unit diagonal.
- Can fix a whole sub-matrix with third projection.
- Linear convergence.
Factor Model

- F diagonal
- η_i, ε_i in $N(0,1)$

- ξ may model
 - the times to default of n companies
 - the returns of n assets

- η are factors effecting all assets
- ε_i models movements only related to asset i.

\[\xi = X\eta + F\varepsilon \]
Factor Model Applications

- Arises in modeling:
 - credit risk to rate collateralized debt obligations (CDOs)
 - capital asset for pricing (using multivariate time series),
 - forward rates

- New routine, G02AE.
Factor Model

- The problem yields a correlation matrix that can be written as

\[C = XX^T + \text{diag}(I - XX^T) \]

- where \(I \) is the identity matrix and \(X \) had \(n \) rows and \(k \) columns.

- Our aim is to find \(X \), the factor loading matrix, that gives a nearest correlation matrix to an (approximate) correlation matrix \(G \).
Factor Model

- G02AE applies a spectral projected gradient method to the modified problem

\[
\min \left\| G - XX^T + \text{diag}(XX^T - I) \right\|_F
\]

- such that

\[
\left\| x_i^T \right\|_2 \leq 1, \text{ for } i = 1, 2, \ldots, n,
\]

- where \(x_i \) is the \(i \)th row of the factor loading matrix.
RECENT NEWS AND COMING SOON
New in the NAG Library (FL, CL, Toolbox, SMP)

- **Complex Lambert W function**
- **Wavelet Transforms**
 - One dimensional continuous transforms
 - Two dimensional discrete and multi-level transforms
- **ODE’s**
 - BVP solution through Chebyshev pseudo-spectral method
- **Matrix Operations**
 - Matrix exponentials
 - Functions of real symmetric and Hermitian matrices
 - LAPACK 3.2 Cholesky solvers and factorizations
- **Interpolation**
 - Modified Shepard’s method in 4D/5D
- **Optimization**
 - Minimization by quadratic approximation (BOBYQA)
 - Stochastic global optimization using PSO (most effective in the SMP library)
- **RNG’s**
 - Generators of multivariate copulas
 - Skip-ahead for Mersenne Twister
 - L’Ecuyer MRG32K3a generator
- **Statistics**
 - Quantiles of streamed data, bivariate Student’s t, and two probability density functions
 - Nearest correlation matrices
 - Hierarchical mixed effects regression
 - Quantile regression
 - Peirce Outlier detection
 - Anderson–Darling goodness-of-fit
New in... continued

- **Optimization**
 - Multi-start
 - Linear and non-linear SDP solvers (Semidefinite programming)

- **Monte Carlo**
 - Brownian Bridge constructor
 - Multi-level monte-carlo

- **Special functions**
 - 1F1, 2F1

- **Vectorised functions**
 - Misc statistical and special functions

- **Long Names**

- **Improved support for R**
 - R package (more than wrappers) for entire Optimisation chapter
Training and Consulting Services

- Product training
 - Libraries, Toolbox
- HPC and GPU Training
 - MPI, OpenMP
 - CUDA, OpenCL
- Flexible to fit needs, hands-on exercises
- Bespoke client work
NAG solutions for .NET

1. Call NAG C (or Fortran) DLL from C#

2. NAG Library for .NET Launched Autumn 2010
 - “a more natural solution”
 - DLL with C# wrappers, Integrated help
 - Includes the most popular NAG chapters (not the entire NAG Library)
 - Very popular with .NET developer community inc. in Finance Services

3. NAG Library for .NET (consultancy based)
 - as above pure C# functions
NAG routines for GPUs

- Monte Carlo components (available now)
 - L’Ecuyer mrg32k3a and Mersenne Twister (with skip-ahead) mt19937
 - Sobol sequence for Quasi-Monte Carlo (up to 50,000 dimensions)
 - Scrambled sequencing for Sobol (Hickernell)
 - Brownian Bridge

- PDEs (coming soon)
 - Finite Difference: Alternating Direction Implicit (ADI)

- Stochastic Volatility (under investigation)
 - Heston Model (again PDE based)

...
Summary

- Suite of routines coming for Matrix Functions
- Routines here now for Nearest Correlation Matrix problems. Improved functionality and performance coming soon.

- Numerical Libraries, Toolboxes and Services for you.
- You drive our development priorities.