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1 NAG Library Mark 26 Reverse Communication
Runge-Kutta Routines

1.1 Reverse Communication

Runge-Kutta processes are by far the most widely used methods to solve non-
stiff ordinary differential equations (ODEs). Generally, software for these
methods are presented in a form where the system to be solved is provided
as routine argument to the interface. However, this is not always the most
convenient way to provide such a system. For example, the system may
incorporate parameters that are themselves the solution of an associated
problem (sparse least-squares, say). A flexible alternative is to allow the
system to be evaluated at a point in time outside of the solver routine:
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Call setup routine

Loop1 over time steps

Loop2 over reverse communcation Solver

Call solver

If step complete is flagged

Exit Loop2

Else

evaluate system (y’=) f(y,t) at some given (y,t)

End

End

solution at current time available, y(t)

If final time reached

Exit Loop1

End

End

The routine d02pgf, introduced at Mark 26 of the NAG Libraries, is a
one-step, reverse-communication Runge-Kutta routine which performs the
same functionality as he forward-communication routine d02pff.

1.2 High order interpolation

The solution is available at each time step, but the solution at intermediate
times might be required. A common situation is where we want to find any
cases where a nonlinear system G(y, t) = 0 has a solution on the trajectory
y(t). That is, does G(y, t) have any roots in the last time-step from t = tprev
to tnow. o do this requires that the solution y(t) be interpolated between the
solutions available at the last and current time steps. To do this accurately is
not straightforward; it involves solving the system from t = tprev to t = tnow
using a continuous Runge-Kutta process. This continuous process, once
constructed, can then efficiently return accurate solutions for any number
of points in time over the last time-step; the same order of accuracy as the
original discrete process is achieved.

The contruction phase requires solving the original system, so if we re-
quire reverse communication to solve the ODE, then we require reverse com-
munication to construct the continuous interpolator. The routine d02phf,
introduced to the NAG Libraries at Mark 26, is a reverse communication
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continuous interpolation constructor. A particular advantage of this routine
is that it can contruct an interpolator for the high-order 7(8) Runge-Kutta
pair. The routine d02pjf uses the construction provided by d02phf to cheaply
evaluate the ODE solution at any point in time over the last time-step.

1.3 Root Finding

Finding possible roots G(y, t) = 0, t ∈ [tprev, tnow] requires the ODE solu-
tion y(t) to be evaluated at a number of points in [tprev, tnow] and is usually
triggered by a change in sign of one of the components of G over the time
interval. Thus, when triggered, the interpolator must be constructed and
then evaluated as requested by the root finder.

2 The Three Body Problem

Three bodies, regarded as point masses, lie on a two-dimensional plane. The
gravitational forces between the bodies governs their movement in time. At
start time the mass, starting position and starting velocity of each body
is given; each of these starting values plays a crucial role in the eventual
trajectories of the bodies over time.

The system to solve the three body problem is a relatively simple one of
order 12. The system could be solved using forward communication, but for
the purposes of illustration, and to allow for high-order interpolation, reverse
communication was used.

Interpolation is used to accurately determine the time-zones in which
a pair of objects are considered to experience a near-miss. A near-miss
constant is supplied and near-miss zones for each of the three pairs of objects
is evaluated as the ODE slution proceeds.

A high-order 7(8) Runge-Kuta method is used with global error estima-
tion, and a suitable initial time-step is determined internally.

2.1 Data

tstart = 0.0

tfinal = 5.5

near_miss = 0.3

object masses = 6.0, 5.0, 5.0

starting positions = (1,-1), (1,3), (-2,-1)

velocities = 0.0, 0.0, 0.0

thresholds = 0.0e-8
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2.2 Results

Pairs of objects are tested for near-misses. Pairing 1 is between objects 1
and 2; Pairing 2 is between objects 1 and 3; and Pairing 3 is between objects
2 and 3;

Pairing 2 had near-miss at t = 1.6607 dist = 0.3000 Start of near-miss zone

Pairing 2 had near-miss at t = 1.6621 dist = 0.2888

Pairing 2 had near-miss at t = 1.7000 dist = 0.1850

Pairing 2 had near-miss at t = 1.7131 dist = 0.3000 End of near-miss zone

Pairing 2 had near-miss at t = 3.1540 dist = 0.3000 Start of near-miss zone

Pairing 2 had near-miss at t = 3.1559 dist = 0.2924

Pairing 2 had near-miss at t = 3.2000 dist = 0.2617

Pairing 2 had near-miss at t = 3.2103 dist = 0.3000 End of near-miss zone

Pairing 1 had near-miss at t = 3.7276 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 3.7290 dist = 0.2841

Pairing 1 had near-miss at t = 3.7446 dist = 0.3000 End of near-miss zone

Pairing 3 had near-miss at t = 3.8110 dist = 0.3000 Start of near-miss zone

Pairing 3 had near-miss at t = 3.8115 dist = 0.2860

Pairing 3 had near-miss at t = 3.8115 dist = 2.4066 End of near-miss zone

Pairing 1 had near-miss at t = 3.9157 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 3.9162 dist = 0.2919

Pairing 1 had near-miss at t = 3.9324 dist = 0.3000 End of near-miss zone

Pairing 1 had near-miss at t = 3.9860 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 3.9868 dist = 0.2978

Pairing 1 had near-miss at t = 3.9932 dist = 0.3000 End of near-miss zone

Pairing 3 had near-miss at t = 4.1102 dist = 0.3000 Start of near-miss zone

Pairing 3 had near-miss at t = 4.1102 dist = 0.2995

Pairing 3 had near-miss at t = 4.1102 dist = 1.1448 End of near-miss zone

Pairing 1 had near-miss at t = 4.2563 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 4.2576 dist = 0.2968

Pairing 1 had near-miss at t = 4.2623 dist = 0.3000 End of near-miss zone

Pairing 1 had near-miss at t = 4.3267 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 4.3284 dist = 0.2895

Pairing 1 had near-miss at t = 4.3422 dist = 0.3000 End of near-miss zone

Pairing 3 had near-miss at t = 4.4226 dist = 0.3000 Start of near-miss zone

Pairing 3 had near-miss at t = 4.4228 dist = 0.2940

Pairing 3 had near-miss at t = 4.4466 dist = 0.3000 End of near-miss zone

Pairing 1 had near-miss at t = 4.5049 dist = 0.3000 Start of near-miss zone

Pairing 1 had near-miss at t = 4.5060 dist = 0.2750

Pairing 1 had near-miss at t = 4.5223 dist = 0.3000 End of near-miss zone
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2.3 Figures

Figure 1: Three body trajectories for the given data
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Figure 2: Three body pairing distances
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