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Introduction

Monte-Carlo simulation and random number generation are techniques that are widely used in
financial engineering as a means of assessing the level of exposure to risk. Typical applications
include the pricing of financial derivatives and senario generation in portfolio management. In fact
many of the financial applications that use Monte-Carlo simulation involve the evaluation of
various stochastic integrals which are related to the probabilities of particular events occurring.

A case in point is the pricing of a simple European option, where the value of a call option is
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X is the strike price,T  is the maturity of the option, r is the risk free interest rate, TS is the market

value of the asset at maturity and []
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E denotes the expectation operator.

The value of a European put is therefore, TTTrT
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− where )( TSp  is

the probability that the asset will have market value TS at maturity.

If it is assumed that the value of the asset follows geometric Brownian motion and )( TSp is the
lognormal distribution then the Black-Scholes formula [1] can be used to price the options as
follows:

dxexN

TddTTrXSd

dNXedNSV
dNXedNSV

x
x

rT
p

rT
c

∫
∞−

−

−

−

=

−=−+=

−+−−=
−=

2/

12
20

1

21
0

21
0

2

2
1)( and

),/())2/()/((log

 where

)),()(
),()(

π

σσσ

where 0S  is the current value of the asset,σ  is the volatility of the asset, and )(xN is the
cumulative standard normal distribution.
In many cases however, the assumptions of constant volatility and a lognormal
distribution for TS are quite restrictive. Real financial applications may require a variety of
extensions to the standard Black-Scholes model. Common requirements are for: non-lognormal
distributions, time varying volatilities, caps, floors, barriers etc. In these circumstances it is often
the case that there is no closed form solution to the problem. Monte-Carlo simulation can then
provide a very useful means of evaluating the required integrals.



Monte-Carlo Integration

When we evaluate the integral of a function, )(xf , in the s -dimensional unit cube, SI , by the
Monte-Carlo method we are in fact calculating the average of the function at a set of randomly
sampled points. This means that each point adds linearly to the accumulated sum that will
become the integral and also linearly to the accumulated sum of squares that will become the
variance of the integral.

When there are N sample points the integral is:
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where ν is used to denote the approximation to the integral and Nxxx ,,, 21 K  are the
N , s -dimensional, sample points.
If a pseudo-random number generator is used the points ix will be (should be) independently and
identically distributed. From standard statistical results [2] we can then estimate the expected
error of the integral as follows:

If we set )( ii xf=χ  then since ix is independently and identically distributed iχ is also

independently and identical distributed. The mean of iχ  is ν and the variance is 2)( ∆=iVar χ .  It

is a well known statistical property that the variance of ν is given by
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therefore conclude that the estimated integral ν has a standard error of 2/1−∆ N . This means that

the estimated error of the integral will decrease at the rate of 2/1−N .

Is it possible to achieve a better convergence than this? If sample points are chosen that lie on a
Cartesian grid and we sample each grid point exactly once then the Monte-Carlo method
effectively becomes a deterministic quadrature scheme, whose fractional error decreases at the
rate of 1−N  or faster. The trouble with the grid approach is that it is necessary to decide in
advance how fine it should be, and all the grid points need to be used. It is therefore not possible
to sample until some convergence criterion has been met.

Quasi-random number sequences seek to bridge the gap between the flexibility of pseudo-
random number generators and the advantages of a regular grid. They are designed to have a
high level of uniformity in multidimensional space, but unlike pseudo-random numbers they are
not statistically independent.

Quasi-random sequences

Quasi-random numbers are also called low discrepancy sequences. The discrepancy of a
sequence is a measure of its uniformity and is defined as follows:

 Given a set of points SN Ixxx ∈,,, 21 L and a subset SIG ⊂ ,  define the counting function
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The discrepancy is therefore computed by comparing the actual number of sample points in a
given volume of multidimensional space with the number of sample points that should be there
assuming a uniform distribution.

It can be shown that the discrepancy of the first N terms of quasi-random sequence has the form:
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The principal aim in the construction of low-discrepancy sequences is thus to find sequences in
which the constant SC  is as small as possible. Various sequences have been constructed to
achieve this goal. Here we consider the following quasi-random sequences:

• Niederreiter [3]
• Sobol [4]
• Faure [5]

The results of using NAG random number generator software [6] with GenStat graphics [7] is
shown below. Figures 1-3 illustrate the visual uniformity of the sequences. They were created by
generating 1000, 16-dimensional sample points, and then plotting the 4th dimensional
component of each point against its 5th dimensional component.

In Figure 1, it can be seen that the pseudo-random sequence exhibits clustering of points, and
there are regions with no points at all.

          
                          Figure 1: Pseudo-random sequence points.



Visual inspection of Figure 2 and Figure 3 show that both the Sobol and Niederreiter quasi-
random sequences appear to cover the area more uniformly.

It is interesting to note that the Sobol sequence appears to be a structured lattice which still has
some gaps. The Niederreiter sequence on the other hand appears to be more irregular and
covers the area better. However, we can't automatically conclude from this that the Niederreiter
sequence is the best. This is because we haven't considered all the other possible pairs of
dimensions.

Perhaps the easiest way to evaluate the random number sequences is to use them
to calculate an integral.

     
                     Figure 2: Sobol sequence points.

    
                    Figure 3: Niederreiter sequence points.

In Figure 4 Monte-Carlo results are presented for the calculation of the six dimensional integral:
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                   Figure 4:  Monte Carlo integration using random numbers.

It can be seen that the pseudo-random sequence gives the worst performance. But as the
number of points increases its approximation to the integral improves. Of the quasi-random
sequences it can be seen that the Faure sequence has the worst performance, whilst
both the Sobol and Neiderreiter sequences give rapid convergence to the solution.

To conclude it has been shown that quasi-random sequences can evaluate integrals
more efficiently than pseudo-random sequences. They thus provide financial engineers with a
very useful technique for risk assessment.

George Levy  works at NAG Ltd UK, he can be contacted at george@nag.co.uk.
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