Confluent Hypergeometric Function
\(_1F_1(a; b; x) \) (S22BA, S22BB)

The routines S22BA and S22BB, new at Mark 24, provide the functionality to calculate the confluent hypergeometric function \(_1F_1(a; b; x) \), also known as Kummer’s function \(M(a, b, x) \). This has a wide variety of applications, including CIR processes and pricing Asian options. Many special functions are also expressible as special cases of \(_1F_1 \), including the incomplete gamma function, Bessel functions and Laguerre polynomials.

\(M(a, b, x) \) is one of the independent solutions to the differential equation,
\[
x \frac{d^2M(a, b, x)}{dx^2} + (b - x) \frac{dM(a, b, x)}{dx} - aM(a, b, x), \tag{1}
\]
and can be defined via the power series,
\[
M(a, b, x) = \sum_{j=0}^{\infty} \frac{(a)_j x^j}{(b)_j j!}, \tag{2}
\]
where \((\alpha)_j = 1(\alpha) (\alpha + 1) \ldots (\alpha + j - 1) \) is the rising Pockhammer function of \(\alpha \in \{a, b\} \).

S22BA returns the value \(M \) directly given the values \(a, b \) and \(x \). S22BB returns the solution in the form \(M(a, b, x) = m_f \times 2^{m_s} \). \(M(a, b, x) \) rapidly exceeds standard precision limits for even moderate values of the parameters \(a, b \) and \(x \) \((\sim O(100)) \), and as such the availability of the fractional component \(m_f \) and scale \(m_s \) allows for meaningful results to be returned over much greater ranges. Figure 1 shows \(M(-150 \leq a \leq 150, -150 < b < 150, x = 25) \), plotted as \(\frac{M}{|M|} \log_2(|M| + 1) \) to emphasize the highly oscillatory nature and scale of the function.

S22BB also accepts the parameters \(a \) and \(b \) as integral and decimal fractional components to increase the accuracy in the floating point calculations. This can provide a significant improvement to the solution when small
perturbations to integral values are required. For example, consider the solutions for $M(-199.999999, -400.00001, 600)$. S22BA gives $M(a, b, x) = -0.1320802726327450 \times 10^{295}$, whereas S22BB gives $M(a_{ni} + a_{dr}, b_{ni} + b_{dr}, x) = -0.1320803101722191 \times 10^{295}$, where the nearest integer and decimal remainder components are $a_{ni} = -200, a_{dr} = 10^{-6}, b_{ni} = -200$ and $b_{dr} = -10^{-6}$. The relative differences is $O(10^{-7})$.

Figure 1: $M(a, b, x)$ for $a \in [-150, 150], b \in (-150, 150]$ and $x = 25$.