NAG Library Routine Document G02GCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02GCF fits a generalized linear model with Poisson errors.

2 Specification

```
SUBROUTINE GO2GCF (LINK, MEAN, OFFSET, WEIGHT, N, X, LDX, M, ISX, IP, Y, &
    WT, A, DEV, IDF, B, IRANK, SE, COV, V, LDV, TOL, MAXIT, &
        IPRINT, EPS, WK, IFAIL)
INTEGER N, LDX, M, ISX(M), IP, IDF, IRANK, LDV, MAXIT, IPRINT, &
REAL (KIND=nag_wp) X (LDX,M), Y(N), WT(*), A, DEV, B(IP), SE(IP), &
    COV(IP*(IP+1)/2), V(LDV,IP+7), TOL, EPS, &
    WK((IP*IP+3*IP+22)/2)
CHARACTER(1)
    LINK, MEAN, OFFSET, WEIGHT
```


3 Description

A generalized linear model with Poisson errors consists of the following elements:
(a) a set of n observations, y_{i}, from a Poisson distribution:

$$
\frac{\mu^{y} e^{-\mu}}{y!}
$$

(b) X, a set of p independent variables for each observation, $x_{1}, x_{2}, \ldots, x_{p}$.
(c) a linear model:

$$
\eta=\sum \beta_{j} x_{j}
$$

(d) a link between the linear predictor, η, and the mean of the distribution, $\mu, \eta=g(\mu)$. The possible link functions are:
(i) exponent link: $\eta=\mu^{a}$, for a constant a,
(ii) identity link: $\eta=\mu$,
(iii) \log link: $\eta=\log \mu$,
(iv) square root link: $\eta=\sqrt{\mu}$,
(v) reciprocal link: $\eta=\frac{1}{\mu}$.
(e) a measure of fit, the deviance:

$$
\sum_{i=1}^{n} \operatorname{dev}\left(y_{i}, \hat{\mu}_{i}\right)=\sum_{i=1}^{n} 2\left(y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)-\left(y_{i}-\hat{\mu}_{i}\right)\right)
$$

The linear parameters are estimated by iterative weighted least squares. An adjusted dependent variable, z, is formed:

$$
z=\eta+(y-\mu) \frac{\mathrm{d} \eta}{\mathrm{~d} \mu}
$$

and a working weight, w,

$$
w=\left(\tau d \frac{\mathrm{~d} \eta}{\mathrm{~d} \mu}\right)^{2}
$$

where $\tau=\sqrt{\mu}$.
At each iteration an approximation to the estimate of $\beta, \hat{\beta}$, is found by the weighted least squares regression of z on X with weights w.
G02GCF finds a $Q R$ decomposition of $w^{1 / 2} X$, i.e., $w^{1 / 2} X=Q R$ where R is a p by p triangular matrix and Q is an n by p column orthogonal matrix.
If R is of full rank, then $\hat{\beta}$ is the solution to:

$$
R \hat{\beta}=Q^{\mathrm{T}} w^{1 / 2} z
$$

If R is not of full rank a solution is obtained by means of a singular value decomposition (SVD) of R.

$$
R=Q_{*}\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right) P^{\mathrm{T}}
$$

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R and $w^{1 / 2} X$. This gives the solution

$$
\hat{\beta}=P_{1} D^{-1}\left(\begin{array}{cc}
Q_{*} & 0 \\
0 & I
\end{array}\right) Q^{\mathrm{T}} w^{1 / 2} z
$$

P_{1} being the first k columns of P, i.e., $P=\left(P_{1} P_{0}\right)$.
The iterations are continued until there is only a small change in the deviance.
The initial values for the algorithm are obtained by taking

$$
\hat{\eta}=g(y)
$$

The fit of the model can be assessed by examining and testing the deviance, in particular by comparing the difference in deviance between nested models, i.e., when one model is a sub-model of the other. The difference in deviance between two nested models has, asymptotically, a χ^{2}-distribution with degrees of freedom given by the difference in the degrees of freedom associated with the two deviances.

The parameters estimates, $\hat{\beta}$, are asymptotically Normally distributed with variance-covariance matrix

$$
\begin{aligned}
& C=R^{-1} R^{-1^{\mathrm{T}}} \text { in the full rank case, otherwise } \\
& C=P_{1} D^{-2} P_{1}^{\mathrm{T}}
\end{aligned}
$$

The residuals and influence statistics can also be examined.
The estimated linear predictor $\hat{\eta}=X \hat{\beta}$, can be written as $H w^{1 / 2} z$ for an n by n matrix H. The i th diagonal elements of H, h_{i}, give a measure of the influence of the i th values of the independent variables on the fitted regression model. These are known as leverages.
The fitted values are given by $\hat{\mu}=g^{-1}(\hat{\eta})$.
G02GCF also computes the deviance residuals, r :

$$
r_{i}=\operatorname{sign}\left(y_{i}-\hat{\mu}_{i}\right) \sqrt{\operatorname{dev}\left(y_{i}, \hat{\mu}_{i}\right)}
$$

An option allows prior weights to be used with the model.
In many linear regression models the first term is taken as a mean term or an intercept, i.e., $x_{i, 1}=1$, for $i=1,2, \ldots, n$. This is provided as an option.
Often only some of the possible independent variables are included in a model; the facility to select variables to be included in the model is provided.

If part of the linear predictor can be represented by a variables with a known coefficient then this can be included in the model by using an offset, o :

$$
\eta=o+\sum \beta_{j} x_{j} .
$$

If the model is not of full rank the solution given will be only one of the possible solutions. Other estimates may be obtained by applying constraints to the parameters. These solutions can be obtained by using G02GKF after using G02GCF. Only certain linear combinations of the parameters will have unique estimates, these are known as estimable functions, these can be estimated and tested using G02GNF.
Details of the SVD are made available in the form of the matrix P^{*} :

$$
P^{*}=\binom{D^{-1} P_{1}^{\mathrm{T}}}{P_{0}^{\mathrm{T}}}
$$

The generalized linear model with Poisson errors can be used to model contingency table data; see Cook and Weisberg (1982) and McCullagh and Nelder (1983).

4 References

Cook R D and Weisberg S (1982) Residuals and Influence in Regression Chapman and Hall
McCullagh P and Nelder J A (1983) Generalized Linear Models Chapman and Hall
Plackett R L (1974) The Analysis of Categorical Data Griffin

5 Parameters

1: LINK - CHARACTER(1)
Input
On entry: indicates which link function is to be used.
LINK $=$ ' E^{\prime}
An exponent link is used.
LINK $=$ 'I'
An identity link is used.
LINK $=$ 'L'
A \log link is used;
LINK = 'S'
A square root link is used.
LINK $=$ 'R'
A reciprocal link is used.
Constraint: LINK = 'E', 'I', 'L', 'S' or 'R'.
2: MEAN - CHARACTER(1) Input
On entry: indicates if a mean term is to be included.
MEAN $=$ ' M^{\prime}
A mean term, intercept, will be included in the model.
MEAN $=$ ' Z '
The model will pass through the origin, zero-point.
Constraint: MEAN $=$ ' M^{\prime} or ' Z '.

3: OFFSET - CHARACTER(1) Input
On entry: indicates if an offset is required.
OFFSET $=$ ' Y^{\prime}
An offset is required and the offsets must be supplied in the seventh column of V .

OFFSET $=$ ' N^{\prime}
No offset is required.
Constraint: OFFSET $=$ ' N ' or ' Y '.
4: WEIGHT - CHARACTER(1)
Input
On entry: indicates if prior weights are to be used.
WEIGHT = 'U'
No prior weights are used.
WEIGHT $=$ ' W '
Prior weights are used and weights must be supplied in WT.
Constraint: WEIGHT $=$ ' U ' or ' W '.
5: $\quad \mathrm{N}-$ INTEGER
Input
On entry: n, the number of observations.
Constraint: $\mathrm{N} \geq 2$.
6: $\quad \mathrm{X}($ LDX,M $)-$ REAL (KIND=nag_wp) array
Input
On entry: the matrix of all possible independent variables. $\mathrm{X}(i, j)$ must contain the $i j$ th element of X , for $i=1,2, \ldots, n$ and $j=1,2, \ldots, \mathrm{M}$.

7: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G02GCF is called.

Constraint: LDX $\geq \mathrm{N}$.
8: M - INTEGER
Input
On entry: m, the total number of independent variables.
Constraint: $\mathrm{M} \geq 1$.
9: $\quad \operatorname{ISX}(\mathrm{M})-$ INTEGER array
Input
On entry: indicates which independent variables are to be included in the model.
$\operatorname{ISX}(j)>0$
The variable contained in the j th column of X is included in the regression model.
Constraints:
$\operatorname{ISX}(j) \geq 0$, for $j=1,2, \ldots, \mathrm{M}$;
if MEAN $=$ ' M^{\prime}, exactly IP -1 values of ISX must be >0;
if MEAN $=$ ' Z ', exactly IP values of ISX must be >0.
10: IP - INTEGER
Input
On entry: the number of independent variables in the model, including the mean or intercept if present.
Constraint: IP >0.
11: $\mathrm{Y}(\mathrm{N})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: y, observations on the dependent variable.
Constraint: $\mathrm{Y}(i) \geq 0.0$, for $i=1,2, \ldots, n$.

12: $\quad \mathrm{WT}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array WT must be at least N if $\mathrm{WEIGHT}=$ ' W ', and at least 1 otherwise.

On entry: if WEIGHT $=$ ' W ' >, WT must contain the weights to be used in the weighted regression.
If $\mathrm{WT}(i)=0.0$, the i th observation is not included in the model, in which case the effective number of observations is the number of observations with nonzero weights.
If WEIGHT $=$ ' U ', WT is not referenced and the effective number of observations is n.
Constraint: if WEIGHT $=$ ' ${ }^{\prime}$ ', WT $(i) \geq 0.0$, for $i=1,2, \ldots, n$.
13: \quad A - REAL (KIND=nag_wp)
Input
On entry: if LINK $=$ ' E ', A must contain the power of the exponential.
If LINK \neq ' E ', A is not referenced.
Constraint: if $\mathrm{A} \neq 0.0$, LINK $=$ ' E '.

14: \quad DEV - REAL (KIND=nag_wp)
Output
On exit: the deviance for the fitted model.
IDF - INTEGER
Output
On exit: the degrees of freedom asociated with the deviance for the fitted model.
16: $\quad \mathrm{B}(\mathrm{IP})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the estimates of the parameters of the generalized linear model, $\hat{\beta}$.
If MEAN $=$ ' M^{\prime}, the first element of B will contain the estimate of the mean parameter and $\mathrm{B}(i+1)$ will contain the coefficient of the variable contained in column j of X , where $\operatorname{ISX}(j)$ is the i th positive value in the array ISX.
If MEAN $=$ ' Z ', $\mathrm{B}(i)$ will contain the coefficient of the variable contained in column j of X , where $\operatorname{ISX}(j)$ is the i th positive value in the array ISX.

17: IRANK - INTEGER
Output
On exit: the rank of the independent variables.
If the model is of full rank, IRANK $=$ IP.
If the model is not of full rank, IRANK is an estimate of the rank of the independent variables. IRANK is calculated as the number of singular values greater that EPS \times (largest singular value). It is possible for the SVD to be carried out but for IRANK to be returned as IP.

18: $\quad \operatorname{SE}(\mathrm{IP})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the standard errors of the linear parameters.
$\mathrm{SE}(i)$ contains the standard error of the parameter estimate in $\mathrm{B}(i)$, for $i=1,2, \ldots$, IP.
19: $\quad \operatorname{COV}(\mathrm{IP} \times(\mathrm{IP}+1) / 2)-$ REAL (KIND $=$ nag_wp $)$ array
Output
On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates given in B. They are stored packed by column, i.e., the covariance between the parameter estimate given in $\mathrm{B}(i)$ and the parameter estimate given in $\mathrm{B}(j), j \geq i$, is stored in $\operatorname{COV}((j \times(j-1) / 2+i))$.

20: $\quad \mathrm{V}(\mathrm{LDV}, \mathrm{IP}+7)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: if OFFSET $=$ ' N ', V need not be set.

If OFFSET $=$ ' Y ', $\mathrm{V}(i, 7)$, for $i=1,2, \ldots, n$ must contain the offset values o_{i}. All other values need not be set.

On exit: auxiliary information on the fitted model.
$\mathrm{V}(i, 1) \quad$ contains the linear predictor value, η_{i}, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 2)$ contains the fitted value, $\hat{\mu}_{i}$, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 3)$ contains the variance standardization, $\frac{1}{\tau_{i}}$, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 4)$ contains the square root of the working weight, $w_{i}^{\frac{1}{2}}$, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 5)$ contains the deviance residual, r_{i}, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 6) \quad$ contains the leverage, h_{i}, for $i=1,2, \ldots, n$.
$\mathrm{V}(i, 7)$ contains the offset, o_{i}, for $i=1,2, \ldots, n$. If OFFSET $=$ ' N ', all values will be zero.
$\mathrm{V}(i, j)$ for $j=8, \ldots, \mathrm{IP}+7$, contains the results of the $Q R$ decomposition or the singular value decomposition.

If the model is not of full rank, i.e., IRANK $<$ IP, the first IP rows of columns 8 to IP +7 contain the P^{*} matrix.

21: LDV - INTEGER
Input
On entry: the first dimension of the array V as declared in the (sub)program from which G02GCF is called.

Constraint: $\mathrm{LDV} \geq \mathrm{N}$.

TOL - REAL (KIND=nag_wp)
Input
On entry: indicates the accuracy required for the fit of the model.
The iterative weighted least squares procedure is deemed to have converged if the absolute change in deviance between iterations is less than TOL $\times(1.0+$ Current Deviance $)$. This is approximately an absolute precision if the deviance is small and a relative precision if the deviance is large.
If $0.0 \leq \mathrm{TOL}<$ machine precision, the routine will use $10 \times$ machine precision instead.
Constraint: TOL ≥ 0.0.

23: MAXIT - INTEGER
Input
On entry: the maximum number of iterations for the iterative weighted least squares.
If MAXIT $=0$, a default value of 10 is used.
Constraint: MAXIT ≥ 0.
24: IPRINT - INTEGER
Input
On entry: indicates if the printing of information on the iterations is required.
IPRINT ≤ 0
There is no printing.
IPRINT > 0
Every IPRINT iteration, the following are printed:
the deviance;
the current estimates;
and if the weighted least squares equations are singular then this is indicated.
When printing occurs the output is directed to the current advisory message unit (see X 04 ABF).

25: \quad EPS - REAL (KIND=nag_wp)
Input
On entry: the value of EPS is used to decide if the independent variables are of full rank and, if not, what is the rank of the independent variables. The smaller the value of EPS the stricter the criterion for selecting the singular value decomposition.

If $0.0 \leq$ EPS $<$ machine precision, the routine will use machine precision instead.
Constraint: $\mathrm{EPS} \geq 0.0$.
26: $\quad \mathrm{WK}((\mathrm{IP} \times \mathrm{IP}+3 \times \mathrm{IP}+22) / 2)-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
27: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Note: G02GCF may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N}<2$,
or $\quad \mathrm{M}<1$,
or \quad LDX $<\mathrm{N}$,
or \quad LDV $<\mathrm{N}$,
or $\quad \mathrm{IP}<1$,
or $\quad \mathrm{LINK} \neq$ ' E^{\prime}, 'I', 'L', 'S' or 'R',
or $\quad \operatorname{LINK}={ }^{\prime} \mathrm{E}^{\prime}$ and $\mathrm{A}=0.0$,
or \quad MEAN \neq ' M^{\prime} ' or ' Z ',
or WEIGHT \neq 'U' or 'W',
or OFFSET \neq ' N ' or ' Y ',
or \quad MAXIT <0,
or $\quad \mathrm{TOL}<0.0$,
or \quad EPS <0.0.
IFAIL $=2$
On entry, WEIGHT $=$ ' W ' and a value of $\mathrm{WT}<0.0$.
IFAIL $=3$
On entry, a value of ISX <0,
or the value of IP is incompatible with the values of MEAN and ISX,
or \quad IP is greater than the effective number of observations.

IFAIL $=4$
On entry, $\mathrm{Y}(i)<0.0$ for some $i=1,2, \ldots, n$.
IFAIL $=5$
A fitted value is at the boundary, i.e., $\hat{\mu}=0.0$. This may occur if there are y values of 0.0 and the model is too complex for the data. The model should be reformulated with, perhaps, some observations dropped.

IFAIL $=6$
The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL $=7$

The iterative weighted least squares has failed to converge in MAXIT (or default 10) iterations. The value of MAXIT could be increased but it may be advantageous to examine the convergence using the IPRINT option. This may indicate that the convergence is slow because the solution is at a boundary in which case it may be better to reformulate the model.

IFAIL $=8$

The rank of the model has changed during the weighted least squares iterations. The estimate for β returned may be reasonable, but you should check how the deviance has changed during iterations.

IFAIL $=9$
The degrees of freedom for error are 0 . A saturated model has been fitted.

7 Accuracy

The accuracy depends on the value of TOL as described in Section 5. As the deviance is a function of $\log \mu$ the accuracy of the $\hat{\beta}$ will only be a function of TOL. TOL should therefore be set smaller than the accuracy required for $\hat{\beta}$.

8 Further Comments

None.

9 Example

A 3 by 5 contingency table given by Plackett (1974) is analysed by fitting terms for rows and columns. The table is:

141	67	114	79	39
131	66	143	72	35.
36	14	38	28	16

9.1 Program Text

```
Program g02gcfe
    G02GCF Example Program Text
    Mark 24 Release. NAG Copyright 2012.
    .. Use Statements ..
    Use nag_library, Only: g02gcf, nag_wp
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
```

! .. Local Scalars ..
Real (Kind=nag_wp) : : a, dev, eps, tol
Integer
:: i, idf, ifail, ip, iprint, irank, \&
Character (1)
ldv, ldx, lwk, lwt, m, maxit, n
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : $: ~ b(:), \operatorname{cov}(:)$, se(:), v(:,:), wk(:), \& wt(:), $x(:,:), y(:)$
Integer, Allocatable
: : isx(:)
.. Intrinsic Procedures ..
Intrinsic : : count
! .. Executable Statements ..
Write (nout,*) 'G02GCF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read in the problem size
Read (nin,*) link, mean, offset, weight, n, m
If (weight=='W' .Or. weight=='w') Then lwt $=n$
Else
lwt $=0$

End If
ldx $=\mathrm{n}$
Allocate (x(ldx,m),y(n),wt(lwt),isx(m))
! Read in data
If (lwt>0) Then
Read (nin,*)(x(i,1:m),y(i),wt(i),i=1,n)
Else
Read (nin,*) (x (i, 1:m),y(i), i=1,n)
End If
! Read in variable inclusion flags
Read (nin,*) isx(1:m)
Calculate IP
ip $=$ count (isx $(1: m)>0)$
If (mean=='M' .Or. mean=='m') Then $i p=i p+1$
End If
! Read in power for exponential link
If (link=='E' .Or. link=='e') Then
Read (nin,*) a
End If
ldv = n
lwk $=(i p * i p+3 * i p+22) / 2$
Allocate (b(ip),se(ip), cov(ip*(ip+1)/2),v(ldv,ip+7),wk(lwk))
! Read in the offset
If (offset=='Y'. Or. offset=='y') Then Read (nin,*) v(1:n,7)
End If
! Read in control parameters
Read (nin,*) iprint, eps, tol, maxit
! Fit generalized linear model with Poisson errors
ifail = -1
Call g02gcf(link, mean,offset, weight, $n, x, l d x, m, i s x, i p, y, w t, a, d e v, i d f, b, ~ \& ~$ irank, se, cov, v,ldv,tol, maxit,iprint,eps,wk,ifail)
If (ifail/=0) Then
If (ifail<7) Then
Go To 100
End If
End If

```
! Display results
    Write (nout,99999) 'Deviance = ', dev
    Write (nout,99998) 'Degrees of freedom = ', idf
    Write (nout,*)
    Write (nout,*) ' Estimate Standard error'
    Write (nout,*)
    Write (nout,99997)(b(i),se(i),i=1,ip)
    Write (nout,*)
    Write (nout,*) , Y FV Residual H'
    Write (nout,*)
    Write (nout,99996)(y(i),v(i,2),v(i,5),v(i,6),i=1,n)
1 0 0 ~ C o n t i n u e
99999 Format (1X,A,E12.4)
9 9 9 9 8 ~ F o r m a t ~ ( 1 X , A , I O )
99997 Format (1X,2F14.4)
99996 Format (1X,F7.1,F10.2,F12.4,F10.3)
    End Program gO2gcfe
```


9.2 Program Data

```
G02GCF Example Program Data
'L' 'M' 'N' 'U' 15 8 :: LINK,MEAN,OFFSET,WEIGHT,N,M
1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 141.0
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 67.0
1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 114.0
1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 79.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 39.0
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 131.0
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 66.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 143.0
0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 72.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 35.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 36.0
0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 14.0
0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 38.0
0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 28.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 16.0 :: End of X, Y
    1
O 1.0E-6 5.OE-5 0 :: IPRINT,EPS,TOL,MAXIT
```


9.3 Program Results

G02GCF Example Program Results

```
Deviance = 0.9038E+01
Degrees of freedom = 8
```

Estimate	Standard error		
2.5977	0.0258		
1.2619	0.0438		
1.2777	0.0436		
0.0580	0.0668		
1.0307	0.0551		
0.2910	0.0732		
0.9876	0.0559		
0.4880	0.0675		
	-0.1996	0.0904	
Y			
		FV	Residual
141.0	132.99		0.6875

66.0	64.48	0.1881	0.520
143.0	129.41	1.1749	0.601
72.0	78.52	-0.7465	0.537
35.0	39.48	-0.7271	0.488
36.0	39.90	-0.6276	0.393
14.0	19.04	-1.2131	0.255
38.0	38.21	-0.0346	0.382
28.0	23.19	0.9675	0.282
16.0	11.66	1.2028	0.206

