NAG Library Routine Document

F06ZTF (ZSYMM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06ZTF (ZSYMM) performs one of the matrix-matrix operations

 $C \leftarrow \alpha AB + \beta C$ or $C \leftarrow \alpha BA + \beta C$,

where A is a complex symmetric matrix, B and C are m by n complex matrices, and α and β are complex scalars.

2 Specification

SUBROUTINE F06ZTF (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)

```
INTEGER M, N, LDA, LDB, LDC
COMPLEX (KIND=nag_wp) ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1) SIDE, UPLO
```

The routine may be called by its BLAS name zsymm.

3 Description

None.

4 References

None.

5 **Parameters**

1:	SIDE – CHARACTER(1)	Input
	On entry: specifies whether B is operated on from the left or the right.	
	SIDE = 'L' <i>B</i> is pre-multiplied from the left.	
	SIDE = 'R'	
	B is post-multiplied from the right.	
	Constraint: $SIDE = 'L'$ or 'R'.	
2:	UPLO – CHARACTER(1)	Input
	On entry: specifies whether the upper or lower triangular part of A is stored.	
	UPLO = 'U' The upper triangular part of A is stored.	
	UPLO = 'L' The lower triangular part of A is stored.	
	Constraint: UPLO = 'U' or 'L'.	

3: M – INTEGER

On entry: m, the number of rows of the matrices B and C; the order of A if SIDE = 'L'. Constraint: $M \ge 0$.

4: N - INTEGER

On entry: n, the number of columns of the matrices B and C; the order of A if SIDE = 'R'. Constraint: $N \ge 0$.

5: ALPHA – COMPLEX (KIND=nag wp)

On entry: the scalar α .

6: A(LDA,*) - COMPLEX (KIND=nag_wp) array

Note: the second dimension of the array A must be at least max(1, M) if SIDE = 'L' and at least max(1, N) if SIDE = 'R'.

On entry: the symmetric matrix A; A is m by m if SIDE = L', or n by n if SIDE = R'.

If UPLO = 'U', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If UPLO = 'L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.

7: LDA – INTEGER

On entry: the first dimension of the array A as declared in the (sub)program from which F06ZTF (ZSYMM) is called.

Constraints:

if SIDE = 'L', $LDA \ge max(1, M)$; if SIDE = 'R', $LDA \ge max(1, N)$.

8: B(LDB,*) – COMPLEX (KIND=nag_wp) array

Note: the second dimension of the array B must be at least max(1, N).

On entry: the m by n matrix B.

9: LDB – INTEGER

On entry: the first dimension of the array B as declared in the (sub)program from which F06ZTF (ZSYMM) is called.

Constraint: LDB $\geq \max(1, M)$.

10: BETA – COMPLEX (KIND=nag_wp)

On entry: the scalar β .

11: C(LDC,*) - COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array C must be at least max(1, N).

On entry: the m by n matrix C.

If BETA = 0, C need not be set.

On exit: the updated matrix C.

Input

Input

Input

Input

Input

Input

Input

Input

12: LDC – INTEGER

Input

On entry: the first dimension of the array C as declared in the (sub)program from which F06ZTF (ZSYMM) is called.

Constraint: LDC $\geq \max(1, M)$.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

None.