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1  Scope of the Chapter

This chapter provides facilities for four types of problem:
(1) Matrix Inversion

(i) Matrix Factorizations

(iii) Matrix Arithmetic and Manipulation

(iv) Matrix Functions

These problems are discussed separately in Section 2.1, Section 2.2, Section 2.3 and Section 2.4.

2 Background to the Problems

2.1 Matrix Inversion
(1) Nonsingular square matrices of order n.

If A, a square matrix of order n, is nonsingular (has rank n), then its inverse X exists and satisfies the
equations AX = XA = I (the identity or unit matrix).

It is worth noting that if AX — I = R, so that R is the ‘residual’ matrix, then a bound on the relative
error is given by || R||, i.e.,
lx - A7
e SRl
(o

(i1) General real rectangular matrices.

A real matrix A has no inverse if it is square (n by n) and singular (has rank < n), or if it is of shape
(m by n) with m # n, but there is a Generalized or Pseudo-inverse A" which satisfies the equations

AATA=A,  ATAAT = AT, (AAT) =447,  (ATA)' =474
(which of course are also satisfied by the inverse X of A if A is square and nonsingular).

(a) if m > n and rank(A) = n then A can be factorized using a QR factorization, given by

f)

where () is an m by m orthogonal matrix and R is an n by n, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — R71Q~T
where @ consists of the first n columns of Q.
(b) if m <n and rank(A) = m then A can be factorized using an RQ factorization, given by
A=R 0Q"

where () is an n by n orthogonal matrix and R is an m by m, nonsingular, upper triangular
matrix. The pseudo-inverse of A is then given by

A+ — QR—I’
where Q consists of the first m columns of Q.

(c) if m > n and rank(A) = r < n then A can be factorized using a QR factorization, with column

interchanges, as
_of ®\pr
ol

where @) is an m by m orthogonal matrix, R is an r by n upper trapezoidal matrix and P is an n
by n permutation matrix. The pseudo-inverse of A is then given by
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A* = PR"(RR")™'Q",
where Q consists of the first » columns of Q.
(d) if rank(A) =r < k = min(m,n), then A can be factorized as the singular value decomposition
A=UxV",

where U is an m by m orthogonal matrix, V' is an n by n orthogonal matrix and X' is an m by n
diagonal matrix with non-negative diagonal elements o. The first £ columns of U and V are the
left- and right-hand singular vectors of A respectively and the &k diagonal elements of X' are the
singular values of A. X may be chosen so that

oy >20,>--20,2>0

and in this case if rank(A) = r then

oy 20,220, >0, Opp1 = =0, =0.
If U and V consist of the first 7 columns of U and V/ respectively and Yisanr by r diagonal
matrix with diagonal elements o, 0,,...,0, then A is given by
A=UxV"

and the pseudo-inverse of A is given by
At =vE gt
Notice that
ATA=Vv(="D)VT
which is the classical eigenvalue (spectral) factorization of AT A.

(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of
‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value
decomposition of A is

A=UxvH

where U and V are unitary, V' the conjugate transpose of V and ¥ is as in (d) above.

2.2 Matrix Factorizations

The routines in this section perform matrix factorizations which are required for the solution of systems of
linear equations with various special structures. A few routines which perform associated computations are
also included.

Other routines for matrix factorizations are to be found in Chapters FO7, FO8 and F11.

This section also contains a few routines associated with eigenvalue problems (see Chapter F02).
(Historical note: this section used to contain many more such routines, but they have now been superseded
by routines in Chapter F08.)

2.3 Matrix Arithmetic and Manipulation

The intention of routines in this section (sub-chapters FO1C, FO1V and F01Z) is to cater for some of the
commonly occurring operations in matrix manipulation, e.g., transposing a matrix or adding part of one
matrix to another, and for conversion between different storage formats, e.g., conversion between
rectangular band matrix storage and packed band matrix storage. For vector or matrix-vector or matrix-
matrix operations refer to Chapters FO6 and F16.
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2.4 Matrix Functions

Given a square matrix A, the matrix function f(A) is a matrix with the same dimensions as A which
provides a generalization of the scalar function f.

If A has a full set of eigenvectors V' then A can be factorized as
A=VDV !,
where D is the diagonal matrix whose diagonal elements, d;, are the eigenvalues of A. f(A) is given by
f(A) =VD)V,
where f(D) is the diagonal matrix whose ith diagonal element is f(d;).

In general, A may not have a full set of eigenvectors. The matrix function can then be defined via a
Cauchy integral. For A € C"*",

7(4) = 55 [ 1)1 - a7

where I" is a closed contour surrounding the eigenvalues of A, and f is analytic within I

Algorithms for computing matrix functions are usually tailored to a specific function. Currently Chapter
FO1 contains routines for calculating the exponential, logarithm, sine, cosine, sinh and cosh of both real
and complex matrices. In addition there are routines to compute a general function of real symmetric and
complex Hermitian matrices and a general function of general real and complex matrices.

The condition number of a matrix function is a measure of its sensitivity to perturbations in the data.
Chapter FO1 contains routines for estimating the condition number of the matrix exponential, logarithm,
sine, cosine, sinh or cosh for real or complex matrices. It also contains routines for estimating the
condition number of a general function of a real or complex matrix.

3 Recommendations on Choice and Use of Available Routines

3.1 Matrix Inversion

Note: Dbefore using any routine for matrix inversion, consider carefully whether it is really needed.

Although the solution of a set of linear equations Az = b can be written as x = A~ 'b, the solution should
never be computed by first inverting A and then computing A~'b; the routines in Chapters F04 or FO7
should always be used to solve such sets of equations directly; they are faster in execution, and
numerically more stable and accurate. Similar remarks apply to the solution of least squares problems
which again should be solved by using the routines in Chapters FO4 and FOS8 rather than by computing a
pseudo-inverse.

(a) Nonsingular square matrices of order n

This chapter describes techniques for inverting a general real matrix A and matrices which are positive
definite (have all eigenvalues positive) and are either real and symmetric or complex and Hermitian.
It is wasteful and uneconomical not to use the appropriate routine when a matrix is known to have one
of these special forms. A general routine must be used when the matrix is not known to be positive
definite. In most routines the inverse is computed by solving the linear equations Ax; = ¢;, for
1 =1,2,...,n, where e; is the ith column of the identity matrix.

Routines are given for calculating the approximate inverse, that is solving the linear equations just
once, and also for obtaining the accurate inverse by successive iterative corrections of this first
approximation. The latter, of course, are more costly in terms of time and storage, since each
correction involves the solution of n sets of linear equations and since the original A and its LU
decomposition must be stored together with the first and successively corrected approximations to the
inverse. In practice the storage requirements for the ‘corrected’ inverse routines are about double
those of the ‘approximate’ inverse routines, though the extra computer time is not prohibitive since the
same matrix and the same LU decomposition is used in every linear equation solution.

Despite the extra work of the ‘corrected’ inverse routines they are superior to the ‘approximate’
inverse routines. A correction provides a means of estimating the number of accurate figures in the
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inverse or the number of ‘meaningful’ figures relating to the degree of uncertainty in the coefficients
of the matrix.

The residual matrix R = AX — I, where X is a computed inverse of A, conveys useful information.
Firstly || R is a bound on the relative error in X and secondly || R|| < % guarantees the convergence of

the iterative process in the ‘corrected’ inverse routines.

The decision trees for inversion show which routines in Chapter F04 and Chapter FO7 should be used
for the inversion of other special types of matrices not treated in the chapter.

(b) General real rectangular matrices

For real matrices FOSAEF (DGEQRF) and FO1QJF return QR and R(Q factorizations of A
respectively and FO8BFF (DGEQP3) returns the QR factorization with column interchanges. The
corresponding complex routines are FOS8ASF (ZGEQRF), FOIRJF and FO8BTF (ZGEQP3)
respectively. Routines are also provided to form the orthogonal matrices and transform by the
orthogonal matrices following the use of the above routines. FO1QGF and FOIRGF form the RQ
factorization of an upper trapezoidal matrix for the real and complex cases respectively.

FO1BLF uses the QR factorization as described in Section 2.1(ii)(a) and is the only routine that
explicitly returns a pseudo-inverse. If m > n, then the routine will calculate the pseudo-inverse A" of
the matrix A. If m < n, then the n by m matrix A" should be used. The routine will calculate the

pseudo-inverse Z = (AT)+ = (A*)T of AT and the required pseudo-inverse will be Z". The routine
also attempts to calculate the rank, r, of the matrix given a tolerance to decide when elements can be
regarded as zero. However, should this routine fail due to an incorrect determination of the rank, the
singular value decomposition method (described below) should be used.

FO8KBF (DGESVD) and FOSKPF (ZGESVD) compute the singular value decomposition as described
in Section 2 for real and complex matrices respectively. If A has rank r < k = min(m,n) then the
k — r smallest singular values will be negligible and the pseudo-inverse of A can be obtained as
AT =VX'U" as described in Section 2. If the rank of A is not known in advance it can be
estimated from the singular values (see Section 2.4 in the FO4 Chapter Introduction). In the real case
with m > n, FO2WDF provides details of the QR factorization or the singular value decomposition
depending on whether or not A is of full rank and for some problems provides an attractive alternative
to FOSKBF (DGESVD). For large sparse matrices, leading terms in the singular value decomposition
can be computed using routines from Chapter F12.

3.2 Matrix Factorizations

Each of these routines serves a special purpose required for the solution of sets of simultaneous linear
equations or the eigenvalue problem. For further details you should consult Sections 3 or 4 in the F02
Chapter Introduction or Sections 3 or 4 in the F04 Chapter Introduction.

FO1BRF and FOIBSF are provided for factorizing general real sparse matrices. A more recent algorithm
for the same problem is available through F11MEF. For factorizing real symmetric positive definite sparse
matrices, see F11JAF. These routines should be used only when A is not banded and when the total
number of nonzero elements is less than 10% of the total number of elements. In all other cases either the
band routines or the general routines should be used.

3.3 Matrix Arithmetic and Manipulation

The routines in the FO1C section are designed for the general handling of m by n matrices. Emphasis has
been placed on flexibility in the parameter specifications and on avoiding, where possible, the use of
internally declared arrays. They are therefore suited for use with large matrices of variable row and
column dimensions. Routines are included for the addition and subtraction of sub-matrices of larger
matrices, as well as the standard manipulations of full matrices. Those routines involving matrix
multiplication may use additional-precision arithmetic for the accumulation of inner products. See also
Chapter F06.

The routines in the FOIV (LAPACK) and FO1Z section are designed to allow conversion between full
storage format and one of the packed storage schemes required by some of the routines in Chapters F02,
F04, F06, FO7 and FO8.
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3.3.1 NAG Names and LAPACK Names

Routines with NAG name beginning FO1V may be called either by their NAG names or by their LAPACK
names. When using the NAG Library, the double precision form of the LAPACK name must be used
(beginning with D- or Z-).

References to Chapter FO1 routines in the manual normally include the LAPACK double precision names,
for example, FOIVEF (DTRTTF).

The LAPACK routine names follow a simple scheme (which is similar to that used for the BLAS in
Chapter F06). Most names have the structure XYYTZZ, where the components have the following
meanings:

— the initial letter, X, indicates the data type (real or complex) and precision:
S — real, single precision (in Fortran, 4 byte length REAL)
D — real, double precision (in Fortran, 8 byte length REAL)
C — complex, single precision (in Fortran, 8 byte length COMPLEX)
Z — complex, double precision (in Fortran, 16 byte length COMPLEX)
— the fourth letter, T, indicates that the routine is performing a storage scheme transformation (conversion)

— the letters Y'Y indicate the original storage scheme used to store a triangular part of the matrix A, while
the letters ZZ indicate the target storage scheme of the conversion (Y'Y cannot equal ZZ since this would
do nothing):

TF — Rectangular Full Packed Format (RFP)
TP — Packed Format
TR — Full Format

3.4 Matrix Functions

FO1ECF and FOIFCF compute the matrix exponential, e, of a real and complex square matrix A
respectively. If estimates of the condition number of the matrix exponential are required then FO1JAF and
FO1KAF should be used.

FO1EDF and FOIFDF compute the matrix exponential, ¢”, of a real symmetric and complex Hermitian
matrix respectively. If the matrix is real symmetric, or complex Hermitian then it is recommended that
FO1EDF, or FOIFDF be used as they are more efficient and, in general, more accurate than FO1ECF and
FO1FCF.

FO1EJF and FO1FJF compute the principal matrix logarithm, log(A), of a real and complex square matrix
A respectively. If estimates of the condition number of the matrix logarithm are required then FO1JAF and
FO1KAF should be used.

FOI1EKF and FOIFKF compute the matrix exponential, sine, cosine, sinh or cosh of a real and complex
square matrix A respectively. If the matrix exponential is required then it is recommended that FO1ECF or
FO1FCF be used as they are, in general, more accurate than FOIEKF and FO1FKF. If estimates of the
condition number of the matrix function are required then FO1JAF and FO1KAF should be used.

FO1ELF and FOIEMF compute the matrix function, f(A), of a real square matrix. FOIFLF and FOIFMF
compute the matrix function of a complex square matrix. The derivatives of f are required for these
computations. FO1ELF and FOIFLF use numerical differentiation to obtain the derivatives of f. FO1EMF
and FOIFMF use derivatives you have supplied. If estimates of the condition number of the matrix
function are required and you are supplying derivatives of f, then FO1JCF and FO1KCF should be used. If
estimates of the condition number are required but you are not supplying derivatives then FOIJBF and
FO1KBF should be used.

FO1EFF and FOIFFF compute the matrix function, f(A), of a real symmetric and complex Hermitian
matrix A respectively. If the matrix is real symmetric or complex Hermitian then it is recommended that
FO1EFF or FOIFFF be used as they are more efficient and, in general, more accurate than FO1ELF,
FO1EMEF, FO1FLF and FO1FMF.
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FO1GAF and FOIHAF compute the matrix function e B for explicitly stored dense real and complex
matrices A and B respectively while FOIGBF and FOIHBF compute the same using reverse
communication. In the latter case, control is returned to you. You should calculate any required
matrix-matrix products and then call the routine again.

4 Decision Trees

The decision trees show the routines in this chapter and in Chapter F04, Chapter FO7 and Chapter FO8 that
should be used for inverting matrices of various types. They also show which routine should be used to
calculate various matrix functions.

(1) Matrix Inversion:

Tree 1

Is A an n by n matrix of rank n? Is A a real matrix? —| see Tree 2
yes yes

no

| see Tree 3 |

no

see Tree 4 |

Tree 2: Inverse of a real n by n matrix of full rank

ix?
Is A a band matrix? W' See Note 1.
no
. .. . Do you want guaranteed
2 ?
Is A symmetric? VoS Is A positive definite? vos |accuracy? (See Note 2) W' FO1ABF |

|Il0

Is one triangle of A stored as
ye

a linear array? FO7GDF and FO7GIF |

|Il0

FOIADF or FO7FDF and
FO7FJF

no

FO7PDF and FO7PJF

Is one triangle of A stored as
a linear array? es

no

FO7MDF and FO7TMJF |

no

. o . 9
Is A triangular? VoS Is A stored as a linear array? E' FO7UJF
no
| FO7TIF |
no
Do you want guaranteed
accuracy? (See Note 2) yes FO4AEF |

no

FO7ADF and FOTAJF |
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Tree 3: Inverse of a complex n by » matrix of full rank

ix?
Is A a band matrix? W' See Note 1.
no
Is A Hermitian? Is A positive definite? Is one triangle of A stored as —| FO7GRF and FO7TGWF
yes yes |a linear array? yes
no
|  FOTFRF and FOTFWF |
no

Is one triangle A stored as a
linear array?

—| FO7PRF and FO7TPWF |
yes

no
FOTMRF and FOTMWF |

no

Is one triangle of A stored as
a linear array?

Is A symmetric?

©

m ﬁ FO7QRF and FOTQWF

no

FO7NRF and FOTNWF |

no

. N . 0
Is A triangular? ves Is A stored as a linear array? W' FO7UWF
no
FOTTWF |

no

FO7ANF or FO7ARF and
FO7AWF

Tree 4: Pseudo-inverses

Is A a complex matrix? Is A of full rank? Is A ar,l, m by n matrix with —| FOIRJF and FOIRKF
yes yes |m < n? S
no
FO8ASF and FO8AUF or
FO8ATF
no
FOSKPF |
no

Is A an m by n matrix with

Is A of full rank? 0
yes [m < n?

W' FO1QJF and FO1QKF

no
FO8AEF and FO8AGF or
FO8AFF
no
Is A an m by n matrix with
m < n? yes FOBKBF |
[oo
Is reliability more important
than efficiency? yes FOBKBF |

[oo

| FOIBLF |

Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no routines are
provided specifically for finding such an inverse. The matrix must either be treated as a full matrix, or the
equations AX = B must be solved, where B has been initialized to the identity matrix /. In the latter case,
see the decision trees in Section 4 in the FO4 Chapter Introduction.
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Note 2: by ‘guaranteed accuracy’ we mean that the accuracy of the inverse is improved by use of the
iterative refinement technique using additional precision.

(i1) Matrix Factorizations: see the decision trees in Section 4 in the FO2 and FO4 Chapter Introductions.

(iii) Matrix Arithmetic and Manipulation: not appropriate.

(iv) Matrix Functions:

Tree 5: Matrix functions f(A) of an n by n real matrix A

Is B required? ves Is A stored in dense format? W' FOIGAF
no
FOIGBF |
no
Is A real symmetric? VoS Is e required? W' FO1EDF
no
FO1EFF |
no
b o ) o ) s x|t condion i of e max_{
no
FO1EKF |
no
Is log(A) required? oS {Z;ﬁt}?;nizzie%%mber of the matrix W' FO1JAF
no
FOIEJF |
no
Is exp(A) required? VoS Iei;};ieﬁ?ﬁi?:guﬁz??ber of the matrix E' FO1JAF
no
FOIECF |
no
F(A) will be (.:omputed. Will derivatives Is the? conditipn number of the matrix _| FOLICF
of f be supplied by the user? yes | function required? yes

no

no

FO1EMF

Is the condition number of the matrix
function required?

el

FO1JBF

no

FO1ELF

Mark 24
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tA : 9 . 0
Is ¢ B required? VoS Is A stored in dense format? E' FOIHAF
no
FOIHBF |
no
L A P
Is A complex Hermitian? VoS Is e” required? E' FO1FDF
no
FOIFFF |
no
Is cos(A) or cosh(A) or sin(A) or Is the condition number of the matrix
sinh(A) required? yes | function required? yes FOTKRAF
no
FOIFKF |
no
. Is the condition number of the matrix
? _|
Is log(4) required? yes | logarithm required? yes FOTKRAF
no
FOIFIF |
no
. Is the condition number of the matrix
9 _|
Is exp(A) required’ yes | exponential required? yes FOTKRAF
no
FOIFCF |
no
f(A) will be computed. Will derivatives Is the condition number of the matrix
of f be supplied by the user? yes | function required? yes FOIKCF
no
| FOIFMF |
no
Is the condition number of the matrix
function required? yes FOIKBF |
no
FOIFLF |
5  Functionality Index
Action of the matrix exponential on a compleX MAatriX .......ccceevevveriirrieniereeiennenne FO1HAF
Action of the matrix exponential on a complex matrix (reverse communication).. FOIHBF
Action of the matrix exponential on a real MatriX .......coccoceveverererienenenenenenene FO1GAF
Action of the matrix exponential on a real matrix (reverse communication).......... FO1GBF
Inversion (also see Chapter F07),
real m by n matrix,
PSCUAOTNVETSE. ...eeutieieniieiietieiteettett et e sete bt eetestteste st enbeeeeesseensasseenbeensesseensenseenes FO1BLF
real symmetric positive definite matrix,
ACCUTALE TMIVETSE ..veeeeveeeetieeeiireeeeteeeetteeeeteeeessreeeesseeesseeessssesessseeeereeeesseeessneeanns FO1ABF
APPIOXIMALE INVEISEC...uveeurerreieeererteereertesesseesseessesseessesseessesssesssessessessesssessessses FO1ADF

F01.10
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Matrix Arithmetic and Manipulation,
matrix addition,

COMPLEX MAICES ..ottt ettt ettt ettt ettt sttt st e sttt b saees FO1CWF
TEAL IMALIICES . ..uvevieutieeieiieteetiete et et et e st ebeessesbeesbesseeseesbesseessenseensesssenseessenssenes FO1CTF
MAtriX MUIPIHCALION ...eevieiiiiiiiieie et s FO1CKF

matrix storage conversion,
full to packed triangular storage,

[o0) 1010] 15 11 P11 5 (01U FOIVBF (ZTRTTP)
TEAL IMALIICES ... vevieeteetieieeteetiete et et et eteeetesteetesteesteeesesseeseesseensesseensensnenseens FO1VAF (DTRTTP)
full to Rectangular Full Packed storage,
COMPIEX MALTX ..evtevieieeeieieeie et ete ettt e e et et etesaeebeente s bt entesateneesseenseenes FOIVFF (ZTRTTF)
TEAL TNALTIX .. vviiiiierieeiieeiie et e et e et e et e estaesteeebeestbeessaessseessseesseessseesseeseesssennes FOIVEF (DTRTTF)
packed band < rectangular storage, special provision for diagonal
[o0) 1010] 15 11 P10 5 (1SR FO1ZDF
TEAL IMALIICES ...veevietietieieeieetieteete et et ete et e steetesteesteenaesseeseesseensesseensessnesseens FO1ZCF
packed triangular to full storage,
COMPIEX MALTICES ..evvvieerieerierieereesiieereesiesbeeteesbeesaeesseessseesseessseesseessseesses FO1VDF (ZTPTTR)
TEAL MALTICES ... eeutieiieitieieeite ettt sttt ettt et sbe et saeesaeens FO1VCF (DTPTTR)
packed triangular to Rectangular Full Packed storage,
COMPIEX MALTICES .vevvreeverereieeieeiiesieeetesteetesteeeesteetesseeseessesseensesseesseensesseenes FO1VKF (ZTPTTF)
TEAL TNALTICES ... vviivieieiieeiie et ettt et e et e et e et e e eteeeveesaaeetaeeteeeeveentneenreenns FO1VIJF (DTPTTF)
packed triangular < square storage, special provision for diagonal
COMPIEX MALTICES ..euvvieerieierieiieiereestieereesiesaeebeesbeeteeebeessseessaeesseesseessseesses FO1ZBF
TEAL MALTICES ... eevieerietietieteetiete et et et eteettesteeaeseeesseessesteeseesseensesseensesssessaens FO1ZAF
Rectangular Full Packed to full storage,
COMPIEX MALTICES .vevveeeeereieiieieeiierieeete st eteieeeesteetesseebeeneesaeesesneeseensenseenes FO1VHF (ZTFTTR)
TEAL MNALTICES...c.vvieviiiiiieiieeiie ettt et et e e et e esteesebeestseeabeesabeseseesseessseesneenreanes FOIVGF (DTFTTR)
Rectangular Full Packed to packed triangular storage,
COMPLEX MATICES ..ottt ettt ettt sttt ettt st be et e b as FO1IVMF (ZTFTTP)
TEAL TNALTICES ... evieueieeiiieiieeiee et et eette et e sttt etee s bt esaeeeseesneessseenneesnseenseeenseanns FOIVLF (DTFTTP)
matrix subtraction,
COMPIEX MALTICES ..evveenreeeieiieieeeieteeeteettete st etestte et enbesteenbeensesseensesseeseensenseennas FO1CWF
TEAL MNALTICES . .cveveevieiieiieiieiteitetete ettt ettt et ebe b sae s sa e s sbe e FO1CTF
MNALTIX TTANSPOSE. .. .veeuveeutetieteettenteetesteetenteetesbee bt eatesbeeeesstesbeeatesbeestenbesnnesaeenseennenne FOICRF

Matrix function,
complex Hermitian n by n matrix,
MALTIX EXPONENTIAL .....ieuiiiiieiieiieiieite ettt ettt ettt sbe e naeenes FO1FDF
MATIX FUNCHION L.ivviiiiiciie ettt eesea e e b e e s sressbeetaeesbeesens FO1FFF
complex n by n matrix,
condition number for a matrix exponential, logarithm, sine, cosine, sinh or

COSHL 1ttt ettt b bbb bbbttt eb e FO1KAF
condition number for a matrix function, using numerical differentiation...... FO1KBF
condition number for a matrix function, using user-supplied derivatives ..... FO1KCF
MALTIX EXPONENTIAL.....eeuiiiiiiiieiiiieieec et FO1FCF
matrix exponential, sine, cosine, Sinh Or COSh .......ccccoevverieriirienieieeieieie, FO1FKF
matrix function, using numerical differentiation...........c.cceeeeierievienieniennnnne. FO1FLF
matrix function, using user-supplied derivatives ...........cccceeveveereerieneeniennnnne. FO1FMF
Matrix L0ATTERIM .....ccuiiiiiiiicie et FOIFJF
real n by n matrix,

condition number for a matrix function, using numerical differentiation...... FO1JBF

condition number for a matrix function, using user-supplied derivatives ..... FO1JCF

condition number for the matrix exponential, logarithm, sine, cosine, sinh or

COSHL 1ottt ettt ettt sttt ettt ebe s FO1JAF

MAtriX EXPONENLIAL......cccviiiiiiiiiiiiieie ettt eb et ebeeeeneeseeses FO1ECF
matrix exponential, sine, cosine, Sinh Or COSh .......cccceeveerieriieienieieeieieee, FO1EKF
matrix function, using numerical differentiation...........ccccoeeeeierievienieniennnnne. FO1ELF
matrix function, using user-supplied derivatives ..........cccceeveevereecienienieenenne FO1EMF
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MAatriX 10GATTHRIM ....ooiiiiiiiiee e FO1EJF
real symmetric n by n matrix,

MAtriX EXPONENLIAL.......cciiiiiiiiiiiiieie ettt e e e beeseneeseenes FO1EDF

MATIX FUNCLION ..ottt ettt et e e eeaeeese e FO1EFF

Matrix Transformations,

complex matriX, form UNitary MAatriX ........cccoeeveriviieriieniiesieeieesreereeeeeeveeeeveeeeeas FOIRKF
complex m by n(m < n) matrix,
RQ faCtOTIZALION......eeiiiieiieeiieeie ettt ettt et e st tee et ateeteenseesnseeneeens FOIRIJF
complex upper trapezoidal matrix,
RO faCtOTIZALION ... .eeiieeieeiieie ettt ettt ettt te ettt e te st esbeeeaesbesreesbeenaesneenes FO1RGF
eigenproblem Az = ABzx, A, B banded,
reduction to standard symmetric problem...........ccoceeverieniniinieninieneeee FOIBVF
real almost block-diagonal matrix,
LU faCtOTIZAtION ...c.veeuiieeiecieeie ettt ete ettt steete st steeaesteesaeesaesteensesseessesseensessnens FO1LHF
real band symmetric positive definite matrix,
ULDLU" faCtOTIZAON .....oveevrvveeerreaereeeesssseesssssessssssessssssssssseessssssssssesseees FO1BUF
variable bandwidth, LDL" factOriZation.........oveeveeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeeens FOIMCF
real matrix,
form orthOGONAl MALITX ...ccveevieeieiieieeiieie ettt ettt sre e seebeesbesaeeenas FO1QKF
real m by n(m < n) matrix,
RQ faCtOTIZALION......eecuviiiiieiieciieeieeet e eette ettt e eeereeeebeeteeeaveessbeebeesbeesaseeseeeans FOI1QJF
real sparse matrix,
B2 101101 V2 110 4 FO USSP FOIBRF
factorization, kKnown Sparsity Pattern..........ccccceeevereerrieienieseenieereseesreeereseeennes FOIBSF
real upper trapezoidal matrix,
RQ faCtOTIZALION......eecuiieiiiciieciieeieeet et te et eeeveebeesebeeteeebeesebeebeesbeesaseesseeans FOIQGF
tridiagonal matrix,
LU faCtOTIZAtION ...euviieiiieeiieeiie ettt eiee st ettt et e st e et e s st e taeenseenseessseensaesnneas FOILEF
6  Auxiliary Routines Associated with Library Routine Parameters
None.
7  Routines Withdrawn or Scheduled for Withdrawal

NAG Library Manual

The following lists all those routines that have been withdrawn since Mark 17 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn Mark of

Routine Withdrawal Replacement Routine(s)

FOIAAF 17 FO7ADF (DGETRF) and FO7AJF (DGETRI)
FO1AEF 18 FO7FDF (DPOTRF), FOSSEF (DSYGST) and FOGEGF (DSWAP)
FO1AFF 18 FO6EGF (DSWAP) and FO6YJF (DTRSM)
FO1AGF 18 FOSFEF (DSYTRD)

FO1AHF 18 FOSFGF (DORMTR)

FOI1AJF 18 FOSFEF (DSYTRD) and FOSFFF (DORGTR)
FO1AKF 18 FOSNEF (DGEHRD)

FO1ALF 18 FOSNGF (DORMHR)

FO1AMF 18 FO8NSF (ZGEHRD)

FOIANF 18 FOSNUF (ZUNMHR)

FO1APF 18 FO6QFF and FOSNFF (DORGHR)

FO1ATF 18 FOSNHF (DGEBAL)

FO1AUF 18 FOSNJF (DGEBAK)

FO1AVF 18 FOSNVF (ZGEBAL)

FO1IAWF 18 FOSNWF (ZGEBAK)

FO1AXF 18 FO6EFF (DCOPY) and FOSBEF (DGEQPF)
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FOIAYF 18 FOSGEF (DSPTRD)
FO1AZF 18 FOSGGF (DOPMTR)

FOIBCF 18 FOSFSF (ZHETRD) and FOSFTF (ZUNGTR)
FO1BDF 18 FO7FDF (DPOTRF), FOSSEF (DSYGST) and FO6EGF (DSWAP)
FO1BEF 18 FO6YFF (DTRMM) and FOGEGF (DSWAP)
FO1BNF 17 FO7FRF (ZPOTRF)

FO1BPF 17 FO7FRF (ZPOTRF) and FO7TFWF (ZPOTRI)
FOIBTF 18 FO7ADF (DGETRF)

FOIBWF 18 FOSHEF (DSBTRD)

FO1BXF 17 FO7FDF (DPOTRF)

FOI1LBF 18 FO7BDF (DGBTRF)

FOIMAF 19 FI11JAF

FOINAF 17 FO7BRF (ZGBTRF)

FO1QCF 18 FOSAEF (DGEQRF)

FO1QDF 18 FOSAGF (DORMQR)

FO1QEF 18 FOSAFF (DORGQR)

FO1QFF 18 FOSBEF (DGEQPF)

FOIRCF 18 FOSASF (ZGEQRF)

FOIRDF 18 FOSAUF (ZUNMQR)

FOIREF 18 FOSATF (ZUNGQR)

FOIRFF 18 FOSBSF (ZGEQPF)
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