
NAG Library Routine Document

D02TVF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02TVF is a setup routine which must be called prior to the first call of the nonlinear two-point boundary
value solver D02TKF.

2 Specification

SUBROUTINE D02TVF (NEQ, M, NLBC, NRBC, NCOL, TOLS, MXMESH, NMESH, MESH,
IPMESH, RWORK, LRWORK, IWORK, LIWORK, IFAIL)

&

INTEGER NEQ, M(NEQ), NLBC, NRBC, NCOL, MXMESH, NMESH,
IPMESH(MXMESH), LRWORK, IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) TOLS(NEQ), MESH(MXMESH), RWORK(LRWORK)

3 Description

D02TVF and its associated routines (D02TKF, D02TXF, D02TYF and D02TZF) solve the two-point
boundary value problem for a nonlinear system of ordinary differential equations
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See Section 8 for information on how boundary value problems of a more general nature can be treated.

D02TVF is used to specify an initial mesh, error requirements and other details. D02TKF is then used to
solve the boundary value problem.

The solution routine D02TKF proceeds as follows. A modified Newton method is applied to the equations

y
mið Þ
i xð Þ � fi x; z y xð Þð Þð Þ ¼ 0, i ¼ 1; . . . ; n

and the boundary conditions. To solve these equations numerically the components yi are approximated
by piecewise polynomials vij using a monomial basis on the jth mesh sub-interval. The coefficients of the
polynomials vij form the unknowns to be computed. Collocation is applied at Gaussian points
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¼ 0, i ¼ 1; 2; . . . ; n,

where xjk is the kth collocation point in the jth mesh sub-interval. Continuity at the mesh points is
imposed, that is

vij xjþ1

� �
� vi;jþ1 xjþ1

� �
¼ 0, i ¼ 1; 2; . . . ; n,

where xjþ1 is the right-hand end of the jth mesh sub-interval. The linearized collocation equations and
boundary conditions, together with the continuity conditions, form a system of linear algebraic equations
which are solved using F01LHF and F04LHF. For use in the modified Newton method, an approximation
to the solution on the initial mesh must be supplied via the procedure argument GUESS of D02TKF.

The solver attempts to satisfy the conditions

yi � vik k
1:0þ vik kð Þ � TOLSðiÞ, i ¼ 1; 2; . . . ; n, ð1Þ

where vi is the approximate solution for the ith solution component and TOLS is supplied by you. The
mesh is refined by trying to equidistribute the estimated error in the computed solution over all mesh sub-
intervals, and an extrapolation-like test (doubling the number of mesh sub-intervals) is used to check for
(1).

The routines are based on modified versions of the codes COLSYS and COLNEW (see Ascher et al.
(1979) and Ascher and Bader (1987)). A comprehensive treatment of the numerical solution of boundary
value problems can be found in Ascher et al. (1988) and Keller (1992).
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5 Parameters

1: NEQ – INTEGER Input

On entry: n, the number of ordinary differential equations to be solved.

Constraint: NEQ � 1.

2: MðNEQÞ – INTEGER array Input

On entry: mi, the order of the ith differential equation, for i ¼ 1; 2; . . . ; n.

Constraint: 1 � MðiÞ � 4, for i ¼ 1; 2; . . . ; n.

3: NLBC – INTEGER Input

On entry: p, the number of left boundary conditions defined at the left-hand end, a ( ¼ MESHð1Þ).
Constraint: NLBC � 1.
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4: NRBC – INTEGER Input

On entry: q, the number of right boundary conditions defined at the right-hand end, b
( ¼ MESHðNMESHÞ).
Constraints:

NRBC � 1;

NLBCþ NRBC ¼
Xn
i¼1

MðiÞ.

5: NCOL – INTEGER Input

On entry: the number of collocation points to be used in each mesh sub-interval.

Constraint: mmax � NCOL � 7, where mmax ¼ max MðiÞð Þ.

6: TOLSðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: the error requirement for the ith solution component.

Constraint: 100�machine precision < TOLSðiÞ < 1:0, for i ¼ 1; 2; . . . ; n.

7: MXMESH – INTEGER Input

On entry: the maximum number of mesh points to be used during the solution process.

Constraint: MXMESH � 2� NMESH� 1.

8: NMESH – INTEGER Input

On entry: the number of points to be used in the initial mesh of the solution process.

Constraint: NMESH � 6.

9: MESHðMXMESHÞ – REAL (KIND=nag_wp) array Input

On entry: the positions of the initial NMESH mesh points. The remaining elements of MESH need
not be set. You should try to place the mesh points in areas where you expect the solution to vary
most rapidly. In the absence of any other information the points should be equally distributed on
a; b½ �.

MESHð1Þ must contain the left boundary point, a, and MESHðNMESHÞ must contain the right
boundary point, b.

Constraint: MESHðiÞ < MESHðiþ 1Þ, for i ¼ 1; 2; . . . ;NMESH� 1.

10: IPMESHðMXMESHÞ – INTEGER array Input

On entry: IPMESHðiÞ specifies whether or not the initial mesh point defined in MESHðiÞ, for
i ¼ 1; 2; . . . ;NMESH, should be a fixed point in all meshes computed during the solution process.
The remaining elements of IPMESH need not be set.

IPMESHðiÞ ¼ 1
Indicates that MESHðiÞ should be a fixed point in all meshes.

IPMESHðiÞ ¼ 2
Indicates that MESHðiÞ is not a fixed point.

Constraints:

IPMESHð1Þ ¼ 1 and IPMESHðNMESHÞ ¼ 1, (i.e., the left and right boundary points, a and
b, must be fixed points, in all meshes);
IPMESHðiÞ ¼ 1 or 2, for i ¼ 2; 3; . . . ;NMESH� 1.
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11: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

On exit: contains information for use by D02TKF. This must be the same array as will be supplied
to D02TKF. The contents of this array must remain unchanged between calls.

12: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which D02TVF
is called.

Suggested value: LRWORK ¼ MXMESH� 109� NEQ2 þ 78� NEQþ 7
� �

, which will permit
MXMESH mesh points for a system of NEQ differential equations regardless of their order or the
number of collocation points used.

Constraint: LRWORK � 50þ NEQ� mmax � 1þ NEQþmax NLBC;NRBCð Þð Þ þ 6ð Þ �
kn � kn þð
6Þ �m� � kn þm� � 2ð Þ þMXMESH� m� þ 3ð Þ 2m� þ 3ð Þ � 3þ kn kn þm� þ 6ð Þð Þ

þMXMESH=2, where m� ¼
Xn
i¼1

MðiÞ and kn ¼ NCOL� NEQ.

13: IWORKðLIWORKÞ – INTEGER array Communication Array

On exit: contains information for use by D02TKF. This must be the same array as will be supplied
to D02TKF. The contents of this array must remain unchanged between calls.

14: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02TVF
is called.

Suggested value: LIWORK ¼ MXMESH� 11� NEQþ 6ð Þ, which will permit MXMESH mesh
points for a system of NEQ differential equations regardless of their order or the number of
collocation points used.

Constraint: LIWORK � 23þ 3� NEQ� kn þMXMESH� m� þ kn þ 4ð Þ.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NEQ < 1,
or MðiÞ < 1, for some i,
or MðiÞ > 4, for some i,
or NMESH < 6,
or the values of MESH are not strictly increasing,
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or IPMESHðiÞ is invalid for some i,
or MXMESH < 2� NMESH� 1,
or NCOL < mmax , where mmax ¼ max MðiÞð Þ,
or NCOL > 7,
or NLBC < 1,
or NRBC < 1,
or a value of TOLS is invalid,

or NLBCþ NRBC 6¼
Xn
i¼1

MðiÞ,

or LRWORK or LIWORK is too small.

7 Accuracy

Not applicable.

8 Further Comments

For problems where sharp changes of behaviour are expected over short intervals it may be advisable to:

– use a large value for NCOL;

– cluster the initial mesh points where sharp changes in behaviour are expected;

– maintain fixed points in the mesh using the parameter IPMESH to ensure that the remeshing process
does not inadvertently remove mesh points from areas of known interest before they are detected
automatically by the algorithm.

8.1 Nonseparated Boundary Conditions

A boundary value problem with nonseparated boundary conditions can be treated by transformation to an
equivalent problem with separated conditions. As a simple example consider the system

y01 ¼ f1 x; y1; y2ð Þ

y02 ¼ f2 x; y1; y2ð Þ

on a; b½ � subject to the boundary conditions

g1 y1 að Þð Þ ¼ 0
g2 y2 að Þ; y2 bð Þð Þ ¼ 0.

By adjoining the trivial ordinary differential equation

r0 ¼ 0,

which implies r að Þ ¼ r bð Þ, and letting r bð Þ ¼ y2 bð Þ, say, we have a new system

y01 ¼ f1 x; y1; y2ð Þ
y02 ¼ f2 x; y1; y2ð Þ
r0 ¼ 0,

subject to the separated boundary conditions

g1 y1 að Þð Þ ¼ 0
g2 y2 að Þ; r að Þð Þ ¼ 0
y2 bð Þ � r bð Þ ¼ 0.

There is an obvious overhead in adjoining an extra differential equation: the system to be solved is
increased in size.
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8.2 Multipoint Boundary Value Problems

Multipoint boundary value problems, that is problems where conditions are specified at more than two
points, can also be transformed to an equivalent problem with two boundary points. Each sub-interval
defined by the multipoint conditions can be transformed onto the interval 0; 1½ �, say, leading to a larger set
of differential equations. The boundary conditions of the transformed system consist of the original
boundary conditions and the conditions imposed by the requirement that the solution components be
continuous at the interior break points. For example, consider the equation

y 3ð Þ ¼ f t; y; y 1ð Þ; y 2ð Þ
� �

on a; c½ �

subject to the conditions

y að Þ ¼ A
y bð Þ ¼ B

y 1ð Þ cð Þ ¼ C

where a < b < c. This can be transformed to the system

y
3ð Þ

1 ¼ f t; y1; y
1ð Þ

1 ; y
2ð Þ

1

� �

y
3ð Þ

2 ¼ f t; y2; y
1ð Þ

2 ; y
2ð Þ

2

� �
9=
; on 0; 1½ �

where

y1 � y on a; b½ �
y2 � y on b; c½ �,

subject to the boundary conditions

y1 0ð Þ ¼ A
y1 1ð Þ ¼ B

y
1ð Þ

2 1ð Þ ¼ C
y2 0ð Þ ¼ B from y1 1ð Þ ¼ y2 0ð Þð Þ
y

1ð Þ
1 1ð Þ ¼ y

1ð Þ
2 0ð Þ

y
2ð Þ

1 1ð Þ ¼ y
2ð Þ

2 0ð Þ.

In this instance two of the resulting boundary conditions are nonseparated but they may next be treated as
described above.

8.3 High Order Systems

Systems of ordinary differential equations containing derivatives of order greater than four can always be
reduced to systems of order suitable for treatment by D02TVF and its related routines. For example
suppose we have the sixth-order equation

y 6ð Þ ¼ �y.

Writing the variables y1 ¼ y and y2 ¼ y 4ð Þ we obtain the system

y
4ð Þ

1 ¼ y2

y
2ð Þ

2 ¼ �y1

which has maximal order four, or writing the variables y1 ¼ y and y2 ¼ y 3ð Þ we obtain the system

y
3ð Þ

1 ¼ y2

y
3ð Þ

2 ¼ �y1

which has maximal order three. The best choice of reduction by choosing new variables will depend on
the structure and physical meaning of the system. Note that you will control the error in each of the
variables y1 and y2. Indeed, if you wish to control the error in certain derivatives of the solution of an
equation of order greater than one, then you should make those derivatives new variables.
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8.4 Fixed Points and Singularities

The solver routine D02TKF employs collocation at Gaussian points in each sub-interval of the mesh.
Hence the coefficients of the differential equations are not evaluated at the mesh points. Thus, fixed points
should be specified in the mesh where either the coefficients are singular, or the solution has less
smoothness, or where the differential equations should not be evaluated. Singular coefficients at boundary
points often arise when physical symmetry is used to reduce partial differential equations to ordinary
differential equations. These do not pose a direct numerical problem for using this code but they can
severely impact its convergence.

8.5 Numerical Jacobians

The solver routine D02TKF requires an external procedure FJAC to evaluate the partial derivatives of fi

with respect to the elements of z yð Þ ( ¼ y1; y
1
1; . . . ; y

m1�1ð Þ
1 ; y2; . . . ; y mn�1ð Þ

n

� �
). In cases where the partial

derivatives are difficult to evaluate, numerical approximations can be used. However, this approach might
have a negative impact on the convergence of the modified Newton method. You could consider the use
of symbolic mathematic packages and/or automatic differentiation packages if available to you.

See Section 9 in D02TZF for an example using numerical approximations to the Jacobian. There central
differences are used and each fi is assumed to depend on all the components of z. This requires two
evaluations of the system of differential equations for each component of z. The perturbation used
depends on the size of each component of z and a minimum quantity dependent on the machine precision.
The cost of this approach could be reduced by employing an alternative difference scheme and/or by only
perturbing the components of z which appear in the definitions of the fi. A discussion on the choice of
perturbation factors for use in finite difference approximations to partial derivatives can be found in Gill et
al. (1981).

9 Example

The following example is used to illustrate the treatment of nonseparated boundary conditions. See also
D02TKF, D02TXF, D02TYF and D02TZF, for the illustration of other facilities.

The following equations model of the spread of measles. See Schwartz (1983). Under certain assumptions
the dynamics of the model can be expressed as

y01 ¼ �� � xð Þy1y3

y02 ¼ � xð Þy1y3 � y2=�
y03 ¼ y2=�� y3=�

subject to the periodic boundary conditions

yi 0ð Þ ¼ yi 1ð Þ, i ¼ 1; 2; 3.

Here y1; y2 and y3 are respectively the proportions of susceptibles, infectives and latents to the whole
population. � ( ¼ 0:0279 years) is the latent period, � ( ¼ 0:01 years) is the infectious period and �
( ¼ 0:02) is the population birth rate. � xð Þ ¼ �0 1:0þ cos 2�xð Þ is the contact rate where �0 ¼ 1575:0.

The nonseparated boundary conditions are treated as described in Section 8 by adjoining the trivial
differential equations

y04 ¼ 0
y05 ¼ 0
y06 ¼ 0

that is y4; y5 and y6 are constants. The boundary conditions of the augmented system can then be posed in
the separated form
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y1 0ð Þ � y4 0ð Þ ¼ 0
y2 0ð Þ � y5 0ð Þ ¼ 0
y3 0ð Þ � y6 0ð Þ ¼ 0
y1 1ð Þ � y4 1ð Þ ¼ 0
y2 1ð Þ � y5 1ð Þ ¼ 0
y3 1ð Þ � y6 1ð Þ ¼ 0.

This is a relatively easy problem and an (arbitrary) initial guess of 1 for each component suffices, even
though two components of the solution are much smaller than 1.

9.1 Program Text

! D02TVF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d02tvfe_mod

! D02TVF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: mmax = 1, neq = 6, nin = 5, &

nlbc = 3, nout = 6, nrbc = 3
! .. Local Scalars ..

Real (Kind=nag_wp) :: beta0, eta, lambda, mu
! .. Local Arrays ..

Integer :: m(neq) = (/1,1,1,1,1,1/)
Contains

Subroutine ffun(x,y,neq,m,f)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
beta = beta0*(one+cos(two*x01aaf(beta)*x))
f(1) = mu - beta*y(1,0)*y(3,0)
f(2) = beta*y(1,0)*y(3,0) - y(2,0)/lambda
f(3) = y(2,0)/lambda - y(3,0)/eta
f(4:6) = zero
Return

End Subroutine ffun
Subroutine fjac(x,y,neq,m,dfdy)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dfdy(neq,neq,0:*)
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Real (Kind=nag_wp), Intent (In) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
beta = beta0*(one+cos(two*x01aaf(beta)*x))
dfdy(1,1,0) = -beta*y(3,0)
dfdy(1,3,0) = -beta*y(1,0)
dfdy(2,1,0) = beta*y(3,0)
dfdy(2,2,0) = -one/lambda
dfdy(2,3,0) = beta*y(1,0)
dfdy(3,2,0) = one/lambda
dfdy(3,3,0) = -one/eta
Return

End Subroutine fjac
Subroutine gafun(ya,neq,m,nlbc,ga)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: ga(nlbc)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
ga(1) = ya(1,0) - ya(4,0)
ga(2) = ya(2,0) - ya(5,0)
ga(3) = ya(3,0) - ya(6,0)
Return

End Subroutine gafun
Subroutine gbfun(yb,neq,m,nrbc,gb)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gb(nrbc)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
gb(1) = yb(1,0) - yb(4,0)
gb(2) = yb(2,0) - yb(5,0)
gb(3) = yb(3,0) - yb(6,0)
Return

End Subroutine gbfun
Subroutine gajac(ya,neq,m,nlbc,dgady)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nlbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgady(nlbc,neq,0:*)
Real (Kind=nag_wp), Intent (In) :: ya(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
dgady(1,1,0) = one
dgady(1,4,0) = -one
dgady(2,2,0) = one
dgady(2,5,0) = -one
dgady(3,3,0) = one
dgady(3,6,0) = -one
Return

End Subroutine gajac
Subroutine gbjac(yb,neq,m,nrbc,dgbdy)

! .. Scalar Arguments ..
Integer, Intent (In) :: neq, nrbc

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: dgbdy(nrbc,neq,0:*)
Real (Kind=nag_wp), Intent (In) :: yb(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
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dgbdy(1,1,0) = one
dgbdy(1,4,0) = -one
dgbdy(2,2,0) = one
dgbdy(2,5,0) = -one
dgbdy(3,3,0) = one
dgbdy(3,6,0) = -one
Return

End Subroutine gbjac
Subroutine guess(x,neq,m,y,dym)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: dym(neq)
Real (Kind=nag_wp), Intent (Inout) :: y(neq,0:*)
Integer, Intent (In) :: m(neq)

! .. Executable Statements ..
y(1:3,0) = one
y(4,0) = y(1,0)
y(5,0) = y(2,0)
y(6,0) = y(3,0)
dym(1:neq) = zero
Return

End Subroutine guess
End Module d02tvfe_mod
Program d02tvfe

! D02TVF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02tkf, d02tvf, d02tyf, d02tzf, nag_wp
Use d02tvfe_mod, Only: beta0, eta, ffun, fjac, gafun, gajac, gbfun, &

gbjac, guess, lambda, m, mmax, mu, neq, nin, &
nlbc, nout, nrbc, one

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: dx, ermx
Integer :: i, iermx, ifail, ijermx, liwork, &

lrwork, mxmesh, ncol, nmesh
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: mesh(:), rwork(:), tols(:), y(:,:)
Integer, Allocatable :: ipmesh(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02TVF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) ncol, nmesh, mxmesh
liwork = mxmesh*(11*neq+6)
lrwork = mxmesh*(109*neq**2+78*neq+7)
Allocate (mesh(mxmesh),tols(neq),rwork(lrwork),y(neq,0:mmax-1), &

ipmesh(mxmesh),iwork(liwork))

Read (nin,*) beta0, eta, lambda, mu
Read (nin,*) tols(1:neq)

dx = one/real(nmesh-1,kind=nag_wp)
mesh(1) = 0.0_nag_wp
Do i = 2, nmesh - 1

mesh(i) = mesh(i-1) + dx
End Do
mesh(nmesh) = one

ipmesh(1) = 1
ipmesh(2:nmesh-1) = 2
ipmesh(nmesh) = 1
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! Initialize
ifail = 0
Call d02tvf(neq,m,nlbc,nrbc,ncol,tols,mxmesh,nmesh,mesh,ipmesh,rwork, &

lrwork,iwork,liwork,ifail)

! Solve
ifail = -1
Call d02tkf(ffun,fjac,gafun,gbfun,gajac,gbjac,guess,rwork,iwork,ifail)

! Extract mesh.
ifail = -1
Call d02tzf(mxmesh,nmesh,mesh,ipmesh,ermx,iermx,ijermx,rwork,iwork, &

ifail)

If (ifail/=1) Then
! Print mesh statistics

Write (nout,99999) nmesh, ermx, iermx, ijermx
Write (nout,99998)(i,ipmesh(i),mesh(i),i=1,nmesh)

! Print solution on mesh.
Write (nout,99997)
Do i = 1, nmesh

ifail = 0
Call d02tyf(mesh(i),y,neq,mmax,rwork,iwork,ifail)
Write (nout,99996) mesh(i), y(1:3,0)

End Do
End If

99999 Format (/’ Used a mesh of ’,I4,’ points’/’ Maximum error = ’,E10.2, &
’ in interval ’,I4,’ for component ’,I4/)

99998 Format (/’ Mesh points:’/4(I4,’(’,I1,’)’,F7.4))
99997 Format (/’ Computed solution at mesh points’/’ x y1 ’, &

’ y2 y3’)
99996 Format (1X,F6.3,1X,3E11.3)

End Program d02tvfe

9.2 Program Data

D02TVF Example Program Data
5 11 100 : ncol, nmesh, mxmesh
1575.0 0.01 0.0279 0.02 : beta0, eta, lambda, mu
1.0E-5 1.0E-5 1.0E-5
1.0E-5 1.0E-5 1.0E-5 : tols(1:neq)

9.3 Program Results

D02TVF Example Program Results

Used a mesh of 21 points
Maximum error = 0.14E-07 in interval 5 for component 1

Mesh points:
1(1) 0.0000 2(3) 0.0500 3(2) 0.1000 4(3) 0.1500
5(2) 0.2000 6(3) 0.2500 7(2) 0.3000 8(3) 0.3500
9(2) 0.4000 10(3) 0.4500 11(2) 0.5000 12(3) 0.5500

13(2) 0.6000 14(3) 0.6500 15(2) 0.7000 16(3) 0.7500
17(2) 0.8000 18(3) 0.8500 19(2) 0.9000 20(3) 0.9500
21(1) 1.0000

Computed solution at mesh points
x y1 y2 y3

0.000 0.752E-01 0.180E-04 0.498E-05
0.050 0.761E-01 0.789E-04 0.219E-04
0.100 0.766E-01 0.315E-03 0.892E-04
0.150 0.758E-01 0.101E-02 0.298E-03
0.200 0.726E-01 0.225E-02 0.713E-03
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0.250 0.678E-01 0.311E-02 0.108E-02
0.300 0.641E-01 0.256E-02 0.984E-03
0.350 0.629E-01 0.129E-02 0.550E-03
0.400 0.633E-01 0.414E-03 0.197E-03
0.450 0.643E-01 0.912E-04 0.478E-04
0.500 0.653E-01 0.159E-04 0.881E-05
0.550 0.663E-01 0.277E-05 0.151E-05
0.600 0.673E-01 0.628E-06 0.313E-06
0.650 0.683E-01 0.219E-06 0.964E-07
0.700 0.693E-01 0.124E-06 0.487E-07
0.750 0.703E-01 0.116E-06 0.409E-07
0.800 0.713E-01 0.170E-06 0.551E-07
0.850 0.723E-01 0.370E-06 0.113E-06
0.900 0.733E-01 0.111E-05 0.322E-06
0.950 0.743E-01 0.420E-05 0.118E-05
1.000 0.752E-01 0.180E-04 0.498E-05
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