F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF06GSF (ZDOTCI)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F06GSF (ZDOTCI) computes the scalar product of a conjugated sparse complex vector with a complex vector.

## 2  Specification

 FUNCTION F06GSF ( NZ, X, INDX, Y)
 COMPLEX (KIND=nag_wp) F06GSF
 INTEGER NZ, INDX(*) COMPLEX (KIND=nag_wp) X(*), Y(*)
The routine may be called by its BLAS name zdotci.

## 3  Description

F06GSF (ZDOTCI) returns, via the function name, the value of the scalar product
 $xHy$
where $x$ is a sparse complex vector stored in compressed form, and $y$ is a complex vector in full storage form.

## 4  References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra subprograms ACM Trans. Math. Software 17 253–263

## 5  Parameters

1:     NZ – INTEGERInput
On entry: the number of nonzeros in the sparse vector $x$.
2:     X($*$) – COMPLEX (KIND=nag_wp) arrayInput
Note: the dimension of the array X must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{NZ}}\right)$.
On entry: the compressed vector $x$. X contains ${x}_{i}$ for $i\in J$.
3:     INDX($*$) – INTEGER arrayInput
Note: the dimension of the array INDX must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{NZ}}\right)$.
On entry: INDX must contain the set of indices $J$.
4:     Y($*$) – COMPLEX (KIND=nag_wp) arrayInput
Note: the dimension of the array Y must be at least $\underset{\mathit{k}}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left\{{\mathbf{INDX}}\left(\mathit{k}\right)\right\}$.
On entry: the vector $y$. Only elements corresponding to indices in INDX are accessed.

None.

Not applicable.