| Routine Name |
Mark of Introduction |
Purpose |
| D01AHF
Example Text Example Data |
8 | nagf_quad_1d_fin_well One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands |
| D01AJF
Example Text |
8 | nagf_quad_1d_fin_bad One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly behaved integrands |
| D01AKF
Example Text |
8 | nagf_quad_1d_fin_osc One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions |
| D01ALF
Example Text |
8 | nagf_quad_1d_fin_sing One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points |
| D01AMF
Example Text |
8 | nagf_quad_1d_inf One-dimensional quadrature, adaptive, infinite or semi-infinite interval |
| D01ANF
Example Text |
8 | nagf_quad_1d_fin_wtrig One-dimensional quadrature, adaptive, finite interval, weight function or |
| D01APF
Example Text |
8 | nagf_quad_1d_fin_wsing One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type |
| D01AQF
Example Text |
8 | nagf_quad_1d_fin_wcauchy One-dimensional quadrature, adaptive, finite interval, weight function , Cauchy principal value (Hilbert transform) |
| D01ARF
Example Text |
10 | nagf_quad_1d_indef One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals |
| D01ASF
Example Text |
13 | nagf_quad_1d_inf_wtrig One-dimensional quadrature, adaptive, semi-infinite interval, weight function or |
| D01ATF
Example Text |
13 | nagf_quad_1d_fin_bad_vec One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient on vector machines |
| D01AUF
Example Text |
13 | nagf_quad_1d_fin_osc_vec One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient on vector machines |
| D01BAF
Example Text |
7 | nagf_quad_withdraw_1d_gauss One-dimensional Gaussian quadrature Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. |
| D01BBF
Example Text |
7 | nagf_quad_1d_gauss_wset Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule (deprecated) Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. |
| D01BCF
Example Text Example Plot |
8 | nagf_quad_1d_gauss_wgen Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule |
| D01BDF
Example Text |
8 | nagf_quad_1d_fin_smooth One-dimensional quadrature, non-adaptive, finite interval |
| D01DAF
Example Text |
5 | nagf_quad_2d_fin Two-dimensional quadrature, finite region |
| D01EAF
Example Text Example Plot |
12 | nagf_quad_md_adapt_multi Multidimensional adaptive quadrature over hyper-rectangle, multiple integrands |
| D01FBF
Example Text |
8 | nagf_quad_md_gauss Multidimensional Gaussian quadrature over hyper-rectangle |
| D01FCF
Example Text |
8 | nagf_quad_md_adapt Multidimensional adaptive quadrature over hyper-rectangle |
| D01FDF
Example Text |
10 | nagf_quad_md_sphere Multidimensional quadrature, Sag–Szekeres method, general product region or -sphere |
| D01GAF
Example Text Example Data |
5 | nagf_quad_1d_data One-dimensional quadrature, integration of function defined by data values, Gill–Miller method |
| D01GBF
Example Text |
10 | nagf_quad_md_mcarlo Multidimensional quadrature over hyper-rectangle, Monte–Carlo method |
| D01GCF
Example Text |
10 | nagf_quad_md_numth Multidimensional quadrature, general product region, number-theoretic method |
| D01GDF
Example Text |
14 | nagf_quad_md_numth_vec Multidimensional quadrature, general product region, number-theoretic method, variant of D01GCF efficient on vector machines |
| D01GYF
Example Text |
10 | nagf_quad_md_numth_coeff_prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime |
| D01GZF
Example Text |
10 | nagf_quad_md_numth_coeff_2prime Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes |
| D01JAF
Example Text |
10 | nagf_quad_md_sphere_bad Multidimensional quadrature over an -sphere, allowing for badly behaved integrands |
| D01PAF
Example Text |
10 | nagf_quad_md_simplex Multidimensional quadrature over an -simplex |
| D01RAF
Example Text |
24 | nagf_quad_1d_gen_vec_multi_rcomm One-dimensional quadrature, adaptive, finite interval, multiple integrands, vectorized abscissae, reverse communication |
| D01RBF | 24 | nagf_quad_1d_gen_vec_multi_diagnostic Diagnostic routine for D01RAF |
| D01RCF | 24 | nagf_quad_1d_gen_vec_multi_dimreq Determine required array dimensions for D01RAF |
| D01RGF
Example Text |
24 | nagf_quad_1d_fin_gonnet_vec One-dimensional quadrature, adaptive, finite interval, strategy due to Gonnet, allowing for badly behaved integrands |
| D01TBF
Example Text |
24 | nagf_quad_1d_gauss_wres Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule |
| D01UAF
Example Text |
24 | nagf_quad_1d_gauss_vec One-dimensional Gaussian quadrature, choice of weight functions |
| D01ZKF | 24 | nagf_quad_opt_set Option setting routine |
| D01ZLF | 24 | nagf_quad_opt_get Option getting routine |