Program f07cpfe ! F07CPF Example Program Text ! Mark 24 Release. NAG Copyright 2012. ! .. Use Statements .. Use nag_library, Only: nag_wp, x04dbf, zgtsvx ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Real (Kind=nag_wp) :: rcond Integer :: i, ifail, info, ldb, ldx, n, nrhs ! .. Local Arrays .. Complex (Kind=nag_wp), Allocatable :: b(:,:), d(:), df(:), dl(:), & dlf(:), du(:), du2(:), duf(:), & work(:), x(:,:) Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:) Integer, Allocatable :: ipiv(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout,*) 'F07CPF Example Program Results' Write (nout,*) Flush (nout) ! Skip heading in data file Read (nin,*) Read (nin,*) n, nrhs ldb = n ldx = n Allocate (b(ldb,nrhs),d(n),df(n),dl(n-1),dlf(n-1),du(n-1),du2(n-2), & duf(n-1),work(2*n),x(ldx,nrhs),berr(nrhs),ferr(nrhs),rwork(n),ipiv(n)) ! Read the tridiagonal matrix A from data file Read (nin,*) du(1:n-1) Read (nin,*) d(1:n) Read (nin,*) dl(1:n-1) ! Read the right hand matrix B Read (nin,*)(b(i,1:nrhs),i=1,n) ! Solve the equations AX = B ! The NAG name equivalent of zgtsvx is f07cpf Call zgtsvx('No factors','No transpose',n,nrhs,dl,d,du,dlf,df,duf,du2, & ipiv,b,ldb,x,ldx,rcond,ferr,berr,work,rwork,info) If ((info==0) .Or. (info==n+1)) Then ! Print solution, error bounds and condition number ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call x04dbf('General',' ',n,nrhs,x,ldx,'Bracketed','F7.4', & 'Solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail) Write (nout,*) Write (nout,*) 'Backward errors (machine-dependent)' Write (nout,99999) berr(1:nrhs) Write (nout,*) Write (nout,*) 'Estimated forward error bounds (machine-dependent)' Write (nout,99999) ferr(1:nrhs) Write (nout,*) Write (nout,*) 'Estimate of reciprocal condition number' Write (nout,99999) rcond If (info==n+1) Then Write (nout,*) Write (nout,*) 'The matrix A is singular to working precision' End If Else Write (nout,99998) 'The (', info, ',', info, ')', & ' element of the factor U is zero' End If 99999 Format ((3X,1P,7E11.1)) 99998 Format (1X,A,I3,A,I3,A,A) End Program f07cpfe