Program c06pqfe ! C06PQF Example Program Text ! Mark 24 Release. NAG Copyright 2012. ! .. Use Statements .. Use nag_library, Only: c06pqf, nag_wp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Integer :: i, ieof, ifail, j, m, n ! .. Local Arrays .. Real (Kind=nag_wp), Allocatable :: work(:), x(:) ! .. Executable Statements .. Write (nout,*) 'C06PQF Example Program Results' ! Skip heading in data file Read (nin,*) loop: Do Read (nin,*,Iostat=ieof) m, n If (ieof<0) Exit loop Allocate (work((m+2)*n+15),x(m*(n+2))) Do j = 1, m*(n+2), n + 2 Read (nin,*)(x(j+i),i=0,n-1) End Do Write (nout,*) Write (nout,*) 'Original data values' Write (nout,*) Do j = 1, m*(n+2), n + 2 Write (nout,99999) ' ', (x(j+i),i=0,n-1) End Do ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call c06pqf('F',n,m,x,work,ifail) Write (nout,*) Write (nout,*) & 'Discrete Fourier transforms in complex Hermitian format' Do j = 1, m*(n+2), n + 2 Write (nout,*) Write (nout,99999) 'Real ', (x(j+2*i),i=0,n/2) Write (nout,99999) 'Imag ', (x(j+2*i+1),i=0,n/2) End Do Write (nout,*) Write (nout,*) 'Fourier transforms in full complex form' Do j = 1, m*(n+2), n + 2 Write (nout,*) Write (nout,99999) 'Real ', (x(j+2*i),i=0,n/2), & (x(j+2*(n-i)),i=n/2+1,n-1) Write (nout,99999) 'Imag ', (x(j+2*i+1),i=0,n/2), & (-x(j+2*(n-i)+1),i=n/2+1,n-1) End Do Call c06pqf('B',n,m,x,work,ifail) Write (nout,*) Write (nout,*) 'Original data as restored by inverse transform' Write (nout,*) Do j = 1, m*(n+2), n + 2 Write (nout,99999) ' ', (x(j+i),i=0,n-1) End Do Deallocate (x,work) End Do loop 99999 Format (1X,A,9(:1X,F10.4)) End Program c06pqfe