Program c06fpfe ! C06FPF Example Program Text ! Mark 24 Release. NAG Copyright 2012. ! .. Use Statements .. Use nag_library, Only: c06fpf, c06fqf, c06gqf, c06gsf, nag_wp ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nin = 5, nout = 6 ! .. Local Scalars .. Integer :: i, ieof, ifail, j, m, n ! .. Local Arrays .. Real (Kind=nag_wp), Allocatable :: trig(:), u(:), v(:), work(:), x(:) ! .. Executable Statements .. Write (nout,*) 'C06FPF Example Program Results' ! Skip heading in data file Read (nin,*) loop: Do Read (nin,*,Iostat=ieof) m, n If (ieof<0) Exit loop Allocate (trig(2*n),u(m*n),v(m*n),work(2*m*n),x(m*n)) Do j = 1, m Read (nin,*)(x(i*m+j),i=0,n-1) End Do Write (nout,*) Write (nout,*) 'Original data values' Write (nout,*) Write (nout,99999)(' ',(x(i*m+j),i=0,n-1),j=1,m) ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call c06fpf(m,n,x,'Initial',trig,work,ifail) Write (nout,*) Write (nout,*) 'Discrete Fourier transforms in Hermitian format' Write (nout,*) Write (nout,99999)(' ',(x(i*m+j),i=0,n-1),j=1,m) Write (nout,*) Write (nout,*) 'Fourier transforms in full complex form' Call c06gsf(m,n,x,u,v,ifail) Do j = 1, m Write (nout,*) Write (nout,99999) 'Real ', (u(i*m+j),i=0,n-1) Write (nout,99999) 'Imag ', (v(i*m+j),i=0,n-1) End Do Call c06gqf(m,n,x,ifail) Call c06fqf(m,n,x,'Subsequent',trig,work,ifail) Write (nout,*) Write (nout,*) 'Original data as restored by inverse transform' Write (nout,*) Write (nout,99999)(' ',(x(i*m+j),i=0,n-1),j=1,m) Deallocate (trig,u,v,work,x) End Do loop 99999 Format (1X,A,6F10.4) End Program c06fpfe