NAG Library Routine Document
 F08JSF (ZSTEQR)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08JSF (ZSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian matrix which has been reduced to tridiagonal form.

2 Specification

```
SUBROUTINE FO8JSF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO
REAL (KIND=nag_wp) D(*), E(*), WORK(*)
COMPLEX (KIND=nag_wp) Z(LDZ,*)
CHARACTER(1) COMPZ
```

The routine may be called by its LAPACK name zsteqr.

3 Description

F08JSF (ZSTEQR) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric tridiagonal matrix T. In other words, it can compute the spectral factorization of T as

$$
T=Z \Lambda Z^{\mathrm{T}}
$$

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_{i}, and Z is the orthogonal matrix whose columns are the eigenvectors z_{i}. Thus

$$
T z_{i}=\lambda_{i} z_{i}, \quad i=1,2, \ldots, n
$$

The routine stores the real orthogonal matrix Z in a complex array, so that it may also be used to compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced to tridiagonal form T :

$$
\begin{aligned}
A & =Q T Q^{\mathrm{H}}, \text { where } Q \text { is unitary } \\
& =(Q Z) \Lambda(Q Z)^{\mathrm{H}}
\end{aligned}
$$

In this case, the matrix Q must be formed explicitly and passed to F08JSF (ZSTEQR), which must be called with COMPZ $=$ ' V '. The routines which must be called to perform the reduction to tridiagonal form and form Q are:

$$
\begin{array}{ll}
\text { full matrix } & \text { F08FSF (ZHETRD) and F08FTF (ZUNGTR) } \\
\text { full matrix, packed storage } & \text { F08GSF (ZHPTRD) and F08GTF (ZUPGTR) } \\
\text { band matrix } & \text { F08HSF (ZHBTRD) with VECT = 'V'. }
\end{array}
$$

F08JSF (ZSTEQR) uses the implicitly shifted $Q R$ algorithm, switching between the $Q R$ and $Q L$ variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The eigenvectors are normalized so that $\left\|z_{i}\right\|_{2}=1$, but are determined only to within a complex factor of absolute value 1 .
If only the eigenvalues of T are required, it is more efficient to call F08JFF (DSTERF) instead. If T is positive definite, small eigenvalues can be computed more accurately by F08JUF (ZPTEQR).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular eigenproblem LAPACK Working Note No. 17 (Technical Report CS-89-92) University of Tennessee, Knoxville
Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Parameters

1: COMPZ - CHARACTER(1) Input
On entry: indicates whether the eigenvectors are to be computed.
COMPZ $=$ ' N '
Only the eigenvalues are computed (and the array Z is not referenced).
COMPZ = 'I'
The eigenvalues and eigenvectors of T are computed (and the array Z is initialized by the routine).
COMPZ $={ }^{\prime} \mathrm{V}^{\prime}$
The eigenvalues and eigenvectors of A are computed (and the array Z must contain the matrix Q on entry).
Constraint: COMPZ $=$ ' N ', 'V' or 'I'.
2: $\mathrm{N}-$ INTEGER
Input
On entry: n, the order of the matrix T.
Constraint: $\mathrm{N} \geq 0$.
3: $\quad \mathrm{D}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the dimension of the array D must be at least $\max (1, \mathrm{~N})$.
On entry: the diagonal elements of the tridiagonal matrix T.
On exit: the n eigenvalues in ascending order, unless INFO >0 (in which case see Section 6).
4: $\quad \mathrm{E}(*)-$ REAL (KIND=nag_wp) array
Input/Output
Note: the dimension of the array E must be at least $\max (1, \mathrm{~N}-1)$.
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: E is overwritten.
5: $\quad \mathrm{Z}(\mathrm{LDZ}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Z must be at least $\max (1, \mathrm{~N})$ if $\mathrm{COMPZ}=$ ' V ' or ' I ' and at least 1 if COMPZ = ' N '.
On entry: if COMPZ $=$ ' V^{\prime}, Z must contain the unitary matrix Q from the reduction to tridiagonal form.

If COMPZ $=$ 'I', Z need not be set.
On exit: if COMPZ $=$ ' I ' or ' V ', the n required orthonormal eigenvectors stored as columns of Z; the i th column corresponds to the i th eigenvalue, where $i=1,2, \ldots, n$, unless INFO >0.
If $\mathrm{COMPZ}=$ ' N ', Z is not referenced.

6: LDZ - INTEGER Input
On entry: the first dimension of the array Z as declared in the (sub)program from which F08JSF (ZSTEQR) is called.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{COMPZ}=\text { 'I' or 'V', } \mathrm{LDZ} \geq \max (1, \mathrm{~N}) \text {; } \\
& \text { if } \mathrm{COMPZ}=\mathrm{'N}^{\prime}, \mathrm{LDZ} \geq 1
\end{aligned}
$$

7: $\quad \operatorname{WORK}(*)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Workspace
Note: the dimension of the array WORK must be at least $\max (1,2 \times(\mathrm{N}-1))$ if COMPZ $=$ ' V ' or 'I' and at least 1 if COMPZ $=$ ' N '.
If COMPZ $=$ ' N ', WORK is not referenced.
8: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:
INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
$\mathrm{INFO}>0$
The algorithm has failed to find all the eigenvalues after a total of $30 \times \mathrm{N}$ iterations. In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal matrix similar to T. If INFO $=i$, then i off-diagonal elements have not converged to zero.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $(T+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|T\|_{2}
$$

and ϵ is the machine precision.
If λ_{i} is an exact eigenvalue and $\tilde{\lambda}_{i}$ is the corresponding computed value, then

$$
\left|\tilde{\lambda}_{i}-\lambda_{i}\right| \leq c(n) \epsilon\|T\|_{2}
$$

where $c(n)$ is a modestly increasing function of n.
If z_{i} is the corresponding exact eigenvector, and \tilde{z}_{i} is the corresponding computed eigenvector, then the angle $\theta\left(\tilde{z}_{i}, z_{i}\right)$ between them is bounded as follows:

$$
\theta\left(\tilde{z}_{i}, z_{i}\right) \leq \frac{c(n) \epsilon\|T\|_{2}}{\min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

8 Further Comments

The total number of real floating point operations is typically about $24 n^{2}$ if COMPZ $=$ ' N ' and about $14 n^{3}$ if COMPZ $=$ ' V ' or ' I ', but depends on how rapidly the algorithm converges. When COMPZ $=$ ' N ', the
operations are all performed in scalar mode; the additional operations to compute the eigenvectors when $\mathrm{COMPZ}=$ ' V ' or 'I' can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is F08JEF (DSTEQR).

9 Example

See Section 9 in F08FTF (ZUNGTR), F08GTF (ZUPGTR) or F08HSF (ZHBTRD), which illustrate the use of this routine to compute the eigenvalues and eigenvectors of a full or band Hermitian matrix.

