F07 Chapter Contents (PDF version)
F07 Chapter Introduction
NAG Library Manual

NAG Library Chapter Contents

F07 – Linear Equations (LAPACK)

F07 Chapter Introduction

Routine
Name
Mark of
Introduction

Purpose
F07AAF
Example Text
Example Data
21 DGESV
Computes the solution to a real system of linear equations
F07ABF
Example Text
Example Data
21 DGESVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real system of linear equations
F07ACF
Example Text
Example Data
22 DSGESV
Mixed precision real system solver
F07ADF
Example Text
Example Data
15 DGETRF
LU factorization of realm by n matrix
F07AEF
Example Text
Example Data
15 DGETRS
Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by F07ADF (DGETRF)
F07AFF
Example Text
Example Data
21 DGEEQU
Computes row and column scalings intended to equilibrate a general real matrix and reduce its condition number
F07AGF
Example Text
Example Data
15 DGECON
Estimate condition number of real matrix, matrix already factorized by F07ADF (DGETRF)
F07AHF
Example Text
Example Data
15 DGERFS
Refined solution with error bounds of real system of linear equations, multiple right-hand sides
F07AJF
Example Text
Example Data
15 DGETRI
Inverse of real matrix, matrix already factorized by F07ADF (DGETRF)
F07ANF
Example Text
Example Data
21 ZGESV
Computes the solution to a complex system of linear equations
F07APF
Example Text
Example Data
21 ZGESVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex system of linear equations
F07AQF
Example Text
Example Data
22 ZCGESV
Mixed precision complex system solver
F07ARF
Example Text
Example Data
15 ZGETRF
LU factorization of complex m by n matrix
F07ASF
Example Text
Example Data
15 ZGETRS
Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by F07ARF (ZGETRF)
F07ATF
Example Text
Example Data
21 ZGEEQU
Computes row and column scalings intended to equilibrate a general complex matrix and reduce its condition number
F07AUF
Example Text
Example Data
15 ZGECON
Estimate condition number of complex matrix, matrix already factorized by F07ARF (ZGETRF)
F07AVF
Example Text
Example Data
15 ZGERFS
Refined solution with error bounds of complex system of linear equations, multiple right-hand sides
F07AWF
Example Text
Example Data
15 ZGETRI
Inverse of complex matrix, matrix already factorized by F07ARF (ZGETRF)
F07BAF
Example Text
Example Data
21 DGBSV
Computes the solution to a real banded system of linear equations
F07BBF
Example Text
Example Data
21 DGBSVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real banded system of linear equations
F07BDF
Example Text
Example Data
15 DGBTRF
LU factorization of realm by n band matrix
F07BEF
Example Text
Example Data
15 DGBTRS
Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by F07BDF (DGBTRF)
F07BFF
Example Text
Example Data
21 DGBEQU
Computes row and column scalings intended to equilibrate a real banded matrix and reduce its condition number
F07BGF
Example Text
Example Data
15 DGBCON
Estimate condition number of real band matrix, matrix already factorized by F07BDF (DGBTRF)
F07BHF
Example Text
Example Data
15 DGBRFS
Refined solution with error bounds of real band system of linear equations, multiple right-hand sides
F07BNF
Example Text
Example Data
21 ZGBSV
Computes the solution to a complex banded system of linear equations
F07BPF
Example Text
Example Data
21 ZGBSVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex banded system of linear equations
F07BRF
Example Text
Example Data
15 ZGBTRF
LU factorization of complex m by n band matrix
F07BSF
Example Text
Example Data
15 ZGBTRS
Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by F07BRF (ZGBTRF)
F07BTF
Example Text
Example Data
21 ZGBEQU
Computes row and column scalings intended to equilibrate a complex banded matrix and reduce its condition number
F07BUF
Example Text
Example Data
15 ZGBCON
Estimate condition number of complex band matrix, matrix already factorized by F07BRF (ZGBTRF)
F07BVF
Example Text
Example Data
15 ZGBRFS
Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
F07CAF
Example Text
Example Data
21 DGTSV
Computes the solution to a real tridiagonal system of linear equations
F07CBF
Example Text
Example Data
21 DGTSVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a real tridiagonal system of linear equations
F07CDF
Example Text
Example Data
21 DGTTRF
LU factorization of real tridiagonal matrix
F07CEF
Example Text
Example Data
21 DGTTRS
Solves a real tridiagonal system of linear equations using the LU factorization computed by F07CDF (DGTTRF)
F07CGF
Example Text
Example Data
21 DGTCON
Estimates the reciprocal of the condition number of a real tridiagonal matrix using the LU factorization computed by F07CDF (DGTTRF)
F07CHF
Example Text
Example Data
21 DGTRFS
Refined solution with error bounds of real tridiagonal system of linear equations, multiple right-hand sides
F07CNF
Example Text
Example Data
21 ZGTSV
Computes the solution to a complex tridiagonal system of linear equations
F07CPF
Example Text
Example Data
21 ZGTSVX
Uses the LU factorization to compute the solution, error-bound and condition estimate for a complex tridiagonal system of linear equations
F07CRF
Example Text
Example Data
21 ZGTTRF
LU factorization of complex tridiagonal matrix
F07CSF
Example Text
Example Data
21 ZGTTRS
Solves a complex tridiagonal system of linear equations using the LU factorization computed by F07CDF (DGTTRF)
F07CUF
Example Text
Example Data
21 ZGTCON
Estimates the reciprocal of the condition number of a complex tridiagonal matrix using the LU factorization computed by F07CDF (DGTTRF)
F07CVF
Example Text
Example Data
21 ZGTRFS
Refined solution with error bounds of complex tridiagonal system of linear equations, multiple right-hand sides
F07FAF
Example Text
Example Data
21 DPOSV
Computes the solution to a real symmetric positive-definite system of linear equations
F07FBF
Example Text
Example Data
21 DPOSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite system of linear equations
F07FDF
Example Text
Example Data
15 DPOTRF
Cholesky factorization of real symmetric positive-definite matrix
F07FEF
Example Text
Example Data
15 DPOTRS
Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FDF (DPOTRF)
F07FFF
Example Text
Example Data
21 DPOEQU
Computes row and column scalings intended to equilibrate a real symmetric positive-definite matrix and reduce its condition number
F07FGF
Example Text
Example Data
15 DPOCON
Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07FDF (DPOTRF)
F07FHF
Example Text
Example Data
15 DPORFS
Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides
F07FJF
Example Text
Example Data
15 DPOTRI
Inverse of real symmetric positive-definite matrix, matrix already factorized by F07FDF (DPOTRF)
F07FNF
Example Text
Example Data
21 ZPOSV
Computes the solution to a complex Hermitian positive-definite system of linear equations
F07FPF
Example Text
Example Data
21 ZPOSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite system of linear equations
F07FRF
Example Text
Example Data
15 ZPOTRF
Cholesky factorization of complex Hermitian positive-definite matrix
F07FSF
Example Text
Example Data
15 ZPOTRS
Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FRF (ZPOTRF)
F07FTF
Example Text
Example Data
21 ZPOEQU
Computes row and column scalings intended to equilibrate a complex Hermitian positive-definite matrix and reduce its condition number
F07FUF
Example Text
Example Data
15 ZPOCON
Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by F07FRF (ZPOTRF)
F07FVF
Example Text
Example Data
15 ZPORFS
Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides
F07FWF
Example Text
Example Data
15 ZPOTRI
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by F07FRF (ZPOTRF)
F07GAF
Example Text
Example Data
21 DPPSV
Computes the solution to a real symmetric positive-definite system of linear equations, packed storage
F07GBF
Example Text
Example Data
21 DPPSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite system of linear equations, packed storage
F07GDF
Example Text
Example Data
15 DPPTRF
Cholesky factorization of real symmetric positive-definite matrix, packed storage
F07GEF
Example Text
Example Data
15 DPPTRS
Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GDF (DPPTRF), packed storage
F07GFF
Example Text
Example Data
21 DPPEQU
Computes row and column scalings intended to equilibrate a real symmetric positive-definite matrix and reduce its condition number, packed storage
F07GGF
Example Text
Example Data
15 DPPCON
Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07GDF (DPPTRF), packed storage
F07GHF
Example Text
Example Data
15 DPPRFS
Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides, packed storage
F07GJF
Example Text
Example Data
15 DPPTRI
Inverse of real symmetric positive-definite matrix, matrix already factorized by F07GDF (DPPTRF), packed storage
F07GNF
Example Text
Example Data
21 ZPPSV
Computes the solution to a complex Hermitian positive-definite system of linear equations, packed storage
F07GPF
Example Text
Example Data
21 ZPPSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite system of linear equations, packed storage
F07GRF
Example Text
Example Data
15 ZPPTRF
Cholesky factorization of complex Hermitian positive-definite matrix, packed storage
F07GSF
Example Text
Example Data
15 ZPPTRS
Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GRF (ZPPTRF), packed storage
F07GTF
Example Text
Example Data
21 ZPPEQU
Computes row and column scalings intended to equilibrate a complex Hermitian positive-definite matrix and reduce its condition number, packed storage
F07GUF
Example Text
Example Data
15 ZPPCON
Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by F07GRF (ZPPTRF), packed storage
F07GVF
Example Text
Example Data
15 ZPPRFS
Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, packed storage
F07GWF
Example Text
Example Data
15 ZPPTRI
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by F07GRF (ZPPTRF), packed storage
F07HAF
Example Text
Example Data
21 DPBSV
Computes the solution to a real symmetric positive-definite banded system of linear equations
F07HBF
Example Text
Example Data
21 DPBSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite banded system of linear equations
F07HDF
Example Text
Example Data
15 DPBTRF
Cholesky factorization of real symmetric positive-definite band matrix
F07HEF
Example Text
Example Data
15 DPBTRS
Solution of real symmetric positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HDF (DPBTRF)
F07HFF
Example Text
Example Data
21 DPBEQU
Computes row and column scalings intended to equilibrate a real symmetric positive-definite banded matrix and reduce its condition number
F07HGF
Example Text
Example Data
15 DPBCON
Estimate condition number of real symmetric positive-definite band matrix, matrix already factorized by F07HDF (DPBTRF)
F07HHF
Example Text
Example Data
15 DPBRFS
Refined solution with error bounds of real symmetric positive-definite band system of linear equations, multiple right-hand sides
F07HNF
Example Text
Example Data
21 ZPBSV
Computes the solution to a complex Hermitian positive-definite banded system of linear equations
F07HPF
Example Text
Example Data
21 ZPBSVX
Uses the Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite banded system of linear equations
F07HRF
Example Text
Example Data
15 ZPBTRF
Cholesky factorization of complex Hermitian positive-definite band matrix
F07HSF
Example Text
Example Data
15 ZPBTRS
Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HRF (ZPBTRF)
F07HTF
Example Text
Example Data
21 ZPBEQU
Computes row and column scalings intended to equilibrate a complex Hermitian positive-definite banded matrix and reduce its condition number
F07HUF
Example Text
Example Data
15 ZPBCON
Estimate condition number of complex Hermitian positive-definite band matrix, matrix already factorized by F07HRF (ZPBTRF)
F07HVF
Example Text
Example Data
15 ZPBRFS
Refined solution with error bounds of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides
F07JAF
Example Text
Example Data
21 DPTSV
Computes the solution to a real symmetric positive-definite tridiagonal system of linear equations
F07JBF
Example Text
Example Data
21 DPTSVX
Uses the modified Cholesky factorization to compute the solution, error-bound and condition estimate for a real symmetric positive-definite tridiagonal system of linear equations
F07JDF
Example Text
Example Data
21 DPTTRF
Computes the modified Cholesky factorization of a real symmetric positive-definite tridiagonal matrix
F07JEF
Example Text
Example Data
21 DPTTRS
Solves a real symmetric positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JDF (DPTTRF)
F07JGF
Example Text
Example Data
21 DPTCON
Computes the reciprocal of the condition number of a real symmetric positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JDF (DPTTRF)
F07JHF
Example Text
Example Data
21 DPTRFS
Refined solution with error bounds of real symmetric positive-definite tridiagonal system of linear equations, multiple right-hand sides
F07JNF
Example Text
Example Data
21 ZPTSV
Computes the solution to a complex Hermitian positive-definite tridiagonal system of linear equations
F07JPF
Example Text
Example Data
21 ZPTSVX
Uses the modified Cholesky factorization to compute the solution, error-bound and condition estimate for a complex Hermitian positive-definite tridiagonal system of linear equations
F07JRF
Example Text
Example Data
21 ZPTTRF
Computes the modified Cholesky factorization of a complex Hermitian positive-definite tridiagonal matrix
F07JSF
Example Text
Example Data
21 ZPTTRS
Solves a complex Hermitian positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JRF (ZPTTRF)
F07JUF
Example Text
Example Data
21 ZPTCON
Computes the reciprocal of the condition number of a complex Hermitian positive-definite tridiagonal system using the modified Cholesky factorization computed by F07JRF (ZPTTRF)
F07JVF
Example Text
Example Data
21 ZPTRFS
Refined solution with error bounds of complex Hermitian positive-definite tridiagonal system of linear equations, multiple right-hand sides
F07MAF
Example Text
Example Data
21 DSYSV
Computes the solution to a real symmetric system of linear equations
F07MBF
Example Text
Example Data
21 DSYSVX
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations
F07MDF
Example Text
Example Data
15 DSYTRF
Bunch–Kaufman factorization of real symmetric indefinite matrix
F07MEF
Example Text
Example Data
15 DSYTRS
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MDF (DSYTRF)
F07MGF
Example Text
Example Data
15 DSYCON
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07MDF (DSYTRF)
F07MHF
Example Text
Example Data
15 DSYRFS
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
F07MJF
Example Text
Example Data
15 DSYTRI
Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF (DSYTRF)
F07MNF
Example Text
Example Data
21 ZHESV
Computes the solution to a complex Hermitian system of linear equations
F07MPF
Example Text
Example Data
21 ZHESVX
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations
F07MRF
Example Text
Example Data
15 ZHETRF
Bunch–Kaufman factorization of complex Hermitian indefinite matrix
F07MSF
Example Text
Example Data
15 ZHETRS
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MRF (ZHETRF)
F07MUF
Example Text
Example Data
15 ZHECON
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07MRF (ZHETRF)
F07MVF
Example Text
Example Data
15 ZHERFS
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
F07MWF
Example Text
Example Data
15 ZHETRI
Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07MRF (ZHETRF)
F07NNF
Example Text
Example Data
21 ZSYSV
Computes the solution to a complex symmetric system of linear equations
F07NPF
Example Text
Example Data
21 ZSYSVX
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations
F07NRF
Example Text
Example Data
15 ZSYTRF
Bunch–Kaufman factorization of complex symmetric matrix
F07NSF
Example Text
Example Data
15 ZSYTRS
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by F07NRF (ZSYTRF)
F07NUF
Example Text
Example Data
15 ZSYCON
Estimate condition number of complex symmetric matrix, matrix already factorized by F07NRF (ZSYTRF)
F07NVF
Example Text
Example Data
15 ZSYRFS
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
F07NWF
Example Text
Example Data
15 ZSYTRI
Inverse of complex symmetric matrix, matrix already factorized by F07NRF (ZSYTRF)
F07PAF
Example Text
Example Data
21 DSPSV
Computes the solution to a real symmetric system of linear equations, packed storage
F07PBF
Example Text
Example Data
21 DSPSVX
Uses the diagonal pivoting factorization to compute the solution to a real symmetric system of linear equations, packed storage
F07PDF
Example Text
Example Data
15 DSPTRF
Bunch–Kaufman factorization of real symmetric indefinite matrix, packed storage
F07PEF
Example Text
Example Data
15 DSPTRS
Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PDF (DSPTRF), packed storage
F07PGF
Example Text
Example Data
15 DSPCON
Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07PDF (DSPTRF), packed storage
F07PHF
Example Text
Example Data
15 DSPRFS
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
F07PJF
Example Text
Example Data
15 DSPTRI
Inverse of real symmetric indefinite matrix, matrix already factorized by F07PDF (DSPTRF), packed storage
F07PNF
Example Text
Example Data
21 ZHPSV
Computes the solution to a complex Hermitian system of linear equations, packed storage
F07PPF
Example Text
Example Data
21 ZHPSVX
Uses the diagonal pivoting factorization to compute the solution to a complex Hermitian system of linear equations, packed storage
F07PRF
Example Text
Example Data
15 ZHPTRF
Bunch–Kaufman factorization of complex Hermitian indefinite matrix, packed storage
F07PSF
Example Text
Example Data
15 ZHPTRS
Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PRF (ZHPTRF), packed storage
F07PUF
Example Text
Example Data
15 ZHPCON
Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07PRF (ZHPTRF), packed storage
F07PVF
Example Text
Example Data
15 ZHPRFS
Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
F07PWF
Example Text
Example Data
15 ZHPTRI
Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07PRF (ZHPTRF), packed storage
F07QNF
Example Text
Example Data
21 ZSPSV
Computes the solution to a complex symmetric system of linear equations, packed storage
F07QPF
Example Text
Example Data
21 ZSPSVX
Uses the diagonal pivoting factorization to compute the solution to a complex symmetric system of linear equations, packed storage
F07QRF
Example Text
Example Data
15 ZSPTRF
Bunch–Kaufman factorization of complex symmetric matrix, packed storage
F07QSF
Example Text
Example Data
15 ZSPTRS
Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by F07QRF (ZSPTRF), packed storage
F07QUF
Example Text
Example Data
15 ZSPCON
Estimate condition number of complex symmetric matrix, matrix already factorized by F07QRF (ZSPTRF), packed storage
F07QVF
Example Text
Example Data
15 ZSPRFS
Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
F07QWF
Example Text
Example Data
15 ZSPTRI
Inverse of complex symmetric matrix, matrix already factorized by F07QRF (ZSPTRF), packed storage
F07TEF
Example Text
Example Data
15 DTRTRS
Solution of real triangular system of linear equations, multiple right-hand sides
F07TGF
Example Text
Example Data
15 DTRCON
Estimate condition number of real triangular matrix
F07THF
Example Text
Example Data
15 DTRRFS
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
F07TJF
Example Text
Example Data
15 DTRTRI
Inverse of real triangular matrix
F07TSF
Example Text
Example Data
15 ZTRTRS
Solution of complex triangular system of linear equations, multiple right-hand sides
F07TUF
Example Text
Example Data
15 ZTRCON
Estimate condition number of complex triangular matrix
F07TVF
Example Text
Example Data
15 ZTRRFS
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
F07TWF
Example Text
Example Data
15 ZTRTRI
Inverse of complex triangular matrix
F07UEF
Example Text
Example Data
15 DTPTRS
Solution of real triangular system of linear equations, multiple right-hand sides, packed storage
F07UGF
Example Text
Example Data
15 DTPCON
Estimate condition number of real triangular matrix, packed storage
F07UHF
Example Text
Example Data
15 DTPRFS
Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage
F07UJF
Example Text
Example Data
15 DTPTRI
Inverse of real triangular matrix, packed storage
F07USF
Example Text
Example Data
15 ZTPTRS
Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
F07UUF
Example Text
Example Data
15 ZTPCON
Estimate condition number of complex triangular matrix, packed storage
F07UVF
Example Text
Example Data
15 ZTPRFS
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
F07UWF
Example Text
Example Data
15 ZTPTRI
Inverse of complex triangular matrix, packed storage
F07VEF
Example Text
Example Data
15 DTBTRS
Solution of real band triangular system of linear equations, multiple right-hand sides
F07VGF
Example Text
Example Data
15 DTBCON
Estimate condition number of real band triangular matrix
F07VHF
Example Text
Example Data
15 DTBRFS
Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
F07VSF
Example Text
Example Data
15 ZTBTRS
Solution of complex band triangular system of linear equations, multiple right-hand sides
F07VUF
Example Text
Example Data
15 ZTBCON
Estimate condition number of complex band triangular matrix
F07VVF
Example Text
Example Data
15 ZTBRFS
Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides

F07 Chapter Contents (PDF version)
F07 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009