## D02 – Ordinary Differential Equations

 RoutineName Mark ofIntroduction Purpose D02AGF Example Text 2 ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined D02BGF Example Text 7 ODEs, IVP, Runge–Kutta–Merson method, until a component attains given value (simple driver) D02BHF Example Text 7 ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver) D02BJF Example Text 18 ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) D02CJF Example Text 13 ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) D02EJF Example Text 12 ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver) D02GAF Example Text 8 ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem D02GBF Example Text 8 ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem D02HAF Example Text 8 ODEs, boundary value problem, shooting and matching, boundary values to be determined D02HBF Example Text 8 ODEs, boundary value problem, shooting and matching, general parameters to be determined D02JAF Example Text 8 ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation D02JBF Example Text 8 ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations D02KAF Example Text 7 Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only D02KDF Example Text 7 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points D02KEF Example Text 8 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points D02LAF Example Text 13 Second-order ODEs, IVP, Runge–Kutta–Nystrom method D02LXF 13 Second-order ODEs, IVP, setup for D02LAF D02LYF 13 Second-order ODEs, IVP, diagnostics for D02LAF D02LZF 13 Second-order ODEs, IVP, interpolation for D02LAF D02MVF Example Text 14 ODEs, IVP, DASSL method, setup for D02M–N routines D02MZF 14 ODEs, IVP, interpolation for D02M–N routines, natural interpolant D02NBF Example Text 12 Explicit ODEs, stiff IVP, full Jacobian (comprehensive) D02NCF Example Text 12 Explicit ODEs, stiff IVP, banded Jacobian (comprehensive) D02NDF Example Text 12 Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NGF Example Text 12 Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) D02NHF Example Text 12 Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive) D02NJF Example Text 12 Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NMF Example Text 12 Explicit ODEs, stiff IVP (reverse communication, comprehensive) D02NNF Example Text 12 Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive) D02NRF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, enquiry routine D02NSF 12 ODEs, IVP, for use with D02M–N routines, full Jacobian, linear algebra set up D02NTF 12 ODEs, IVP, for use with D02M–N routines, banded Jacobian, linear algebra set up D02NUF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, linear algebra set up D02NVF 12 ODEs, IVP, BDF method, setup for D02M–N routines D02NWF 12 ODEs, IVP, Blend method, setup for D02M–N routines D02NXF 12 ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routines D02NYF 12 ODEs, IVP, integrator diagnostics, for use with D02M–N routines D02NZF 12 ODEs, IVP, setup for continuation calls to integrator, for use with D02M–N routines D02PCF Example Text 16 ODEs, IVP, Runge–Kutta method, integration over range with output D02PDF Example Text 16 ODEs, IVP, Runge–Kutta method, integration over one step D02PVF 16 ODEs, IVP, setup for D02PCF and D02PDF D02PWF Example Text 16 ODEs, IVP, resets end of range for D02PDF D02PXF Example Text 16 ODEs, IVP, interpolation for D02PDF D02PYF 16 ODEs, IVP, integration diagnostics for D02PCF and D02PDF D02PZF Example Text 16 ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF D02QFF Example Text 13 ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) D02QGF Example Text 13 ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) D02QWF 13 ODEs, IVP, setup for D02QFF and D02QGF D02QXF 13 ODEs, IVP, diagnostics for D02QFF and D02QGF D02QYF 13 ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF D02QZF Example Text 13 ODEs, IVP, interpolation for D02QFF or D02QGF D02RAF Example Text 8 ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility D02SAF Example Text 8 ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined D02TGF Example Text 8 nth-order linear ODEs, boundary value problem, collocation and least-squares D02TKF Example Text 17 ODEs, general nonlinear boundary value problem, collocation technique D02TVF Example Text 17 ODEs, general nonlinear boundary value problem, setup for D02TKF D02TXF Example Text 17 ODEs, general nonlinear boundary value problem, continuation facility for D02TKF D02TYF Example Text 17 ODEs, general nonlinear boundary value problem, interpolation for D02TKF D02TZF Example Text 17 ODEs, general nonlinear boundary value problem, diagnostics for D02TKF D02XJF 12 ODEs, IVP, interpolation for D02M–N routines, natural interpolant D02XKF 12 ODEs, IVP, interpolation for D02M–N routines, C1 interpolant D02ZAF 12 ODEs, IVP, weighted norm of local error estimate for D02M–N routines