V Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual

Keyword : vector

D01ATF   One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient on vector machines
D01AUF   One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient on vector machines
D01GDF   Multi-dimensional quadrature, general product region, number-theoretic method, variant of D01GCF efficient on vector machines
E02DEF   Evaluation of fitted bicubic spline at a vector of points
F06DBF   Broadcast scalar into integer vector
F06DFF   Copy integer vector
F06ECF   Add scalar times real vector to real vector
F06EDF   Multiply real vector by scalar
F06EFF   Copy real vector
F06EJF   Compute Euclidean norm of real vector
F06EKF   Sum absolute values of real vector elements
F06ETF   Add scalar times real sparse vector to real sparse vector
F06EUF   Gather real sparse vector
F06EVF   Gather and set to zero real sparse vector
F06EWF   Scatter real sparse vector
F06FBF   Broadcast scalar into real vector
F06FCF   Multiply real vector by diagonal matrix
F06FDF   Multiply real vector by scalar, preserving input vector
F06FEF   Multiply real vector by reciprocal of scalar
F06FGF   Negate real vector
F06FJF   Update Euclidean norm of real vector in scaled form
F06FKF   Compute weighted Euclidean norm of real vector
F06FLF   Elements of real vector with largest and smallest absolute value
F06GCF   Add scalar times complex vector to complex vector
F06GDF   Multiply complex vector by complex scalar
F06GFF   Copy complex vector
F06GRF   Dot product of two complex sparse vector, unconjugated
F06GSF   Dot product of two complex sparse vector, conjugated
F06GTF   Add scalar times complex sparse vector to complex sparse vector
F06GUF   Gather complex sparse vector
F06GVF   Gather and set to zero complex sparse vector
F06GWF   Scatter complex sparse vector
F06HBF   Broadcast scalar into complex vector
F06HCF   Multiply complex vector by complex diagonal matrix
F06HDF   Multiply complex vector by complex scalar, preserving input vector
F06HGF   Negate complex vector
F06JDF   Multiply complex vector by real scalar
F06JJF   Compute Euclidean norm of complex vector
F06JKF   Sum absolute values of complex vector elements
F06JLF   Index, real vector element with largest absolute value
F06JMF   Index, complex vector element with largest absolute value
F06KCF   Multiply complex vector by real diagonal matrix
F06KDF   Multiply complex vector by real scalar, preserving input vector
F06KEF   Multiply complex vector by reciprocal of real scalar
F06KFF   Copy real vector to complex vector
F06KJF   Update Euclidean norm of complex vector in scaled form
F06KLF   Last non-negligible element of real vector
F06PAF   Matrix-vector product, real rectangular matrix
F06PBF   Matrix-vector product, real rectangular band matrix
F06PCF   Matrix-vector product, real symmetric matrix
F06PDF   Matrix-vector product, real symmetric band matrix
F06PEF   Matrix-vector product, real symmetric packed matrix
F06PFF   Matrix-vector product, real triangular matrix
F06PGF   Matrix-vector product, real triangular band matrix
F06PHF   Matrix-vector product, real triangular packed matrix
F06SAF   Matrix-vector product, complex rectangular matrix
F06SBF   Matrix-vector product, complex rectangular band matrix
F06SCF   Matrix-vector product, complex Hermitian matrix
F06SDF   Matrix-vector product, complex Hermitian band matrix
F06SEF   Matrix-vector product, complex Hermitian packed matrix
F06SFF   Matrix-vector product, complex triangular matrix
F06SGF   Matrix-vector product, complex triangular band matrix
F06SHF   Matrix-vector product, complex triangular packed matrix
F06SMF   Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF   Rank-1 update, complex rectangular matrix, conjugated vector
F06TAF   Matrix-vector product, complex symmetric matrix
F06TCF   Matrix-vector product, complex symmetric packed matrix
F11XAF   Real sparse nonsymmetric matrix vector multiply
F11XEF   Real sparse symmetric matrix vector multiply
F11XNF   Complex sparse non-Hermitian matrix vector multiply
F11XSF   Complex sparse Hermitian matrix vector multiply
G13DXF   Calculates the zeros of a vector autoregressive (or moving average) operator
M01CAF   Sort a vector, real numbers
M01CBF   Sort a vector, integer numbers
M01CCF   Sort a vector, character data
M01DAF   Rank a vector, real numbers
M01DBF   Rank a vector, integer numbers
M01DCF   Rank a vector, character data
M01EAF   Rearrange a vector according to given ranks, real numbers
M01EBF   Rearrange a vector according to given ranks, integer numbers
M01ECF   Rearrange a vector according to given ranks, character data
M01EDF   Rearrange a vector according to given ranks, complex numbers

V Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual
The Numerical Algorithms Group Ltd, Oxford UK. 2006