O Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual

Keyword : odes

D02AGF   ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
D02BGF   ODEs, IVP, Runge–Kutta–Merson method, until a component attains given value (simple driver)
D02BHF   ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver)
D02BJF   ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
D02CJF   ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver)
D02EJF   ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)
D02GAF   ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
D02GBF   ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem
D02HAF   ODEs, boundary value problem, shooting and matching, boundary values to be determined
D02HBF   ODEs, boundary value problem, shooting and matching, general parameters to be determined
D02JAF   ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation
D02JBF   ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations
D02MVF   ODEs, IVP, DASSL method, setup for D02M–N routine s
D02MZF   ODEs, IVP, interpolation for D02M–N routine s, natural interpolant
D02NRF   ODEs, IVP, for use with D02M–N routine s, sparse Jacobian, enquiry routine
D02NSF   ODEs, IVP, for use with D02M–N routine s, full Jacobian, linear algebra set up
D02NTF   ODEs, IVP, for use with D02M–N routine s, banded Jacobian, linear algebra set up
D02NUF   ODEs, IVP, for use with D02M–N routine s, sparse Jacobian, linear algebra set up
D02NVF   ODEs, IVP, BDF method, setup for D02M–N routine s
D02NWF   ODEs, IVP, Blend method, setup for D02M–N routine s
D02NXF   ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routine s
D02NYF   ODEs, IVP, integrator diagnostics, for use with D02M–N routine s
D02NZF   ODEs, IVP, setup for continuation calls to integrator, for use with D02M–N routine s
D02PCF   ODEs, IVP, Runge–Kutta method, integration over range with output
D02PDF   ODEs, IVP, Runge–Kutta method, integration over one step
D02PVF   ODEs, IVP, setup for D02PCF and D02PDF
D02PWF   ODEs, IVP, resets end of range for D02PDF
D02PXF   ODEs, IVP, interpolation for D02PDF
D02PYF   ODEs, IVP, integration diagnostics for D02PCF and D02PDF
D02PZF   ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
D02QFF   ODEs, IVP, Adams method with root-finding (forward communication, comprehensive)
D02QGF   ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
D02QWF   ODEs, IVP, setup for D02QFF and D02QGF
D02QXF   ODEs, IVP, diagnostics for D02QFF and D02QGF
D02QYF   ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
D02QZF   ODEs, IVP, interpolation for D02QFF or D02QGF
D02RAF   ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
D02SAF   ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
D02TKF   ODEs, general nonlinear boundary value problem, collocation technique
D02TVF   ODEs, general nonlinear boundary value problem, setup for D02TKF
D02TXF   ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
D02TYF   ODEs, general nonlinear boundary value problem, interpolation for D02TKF
D02TZF   ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
D02XJF   ODEs, IVP, interpolation for D02M–N routine s, natural interpolant
D02XKF   ODEs, IVP, interpolation for D02M–N routine s, C1 interpolant
D02ZAF   ODEs, IVP, weighted norm of local error estimate for D02M–N routine s

O Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual
The Numerical Algorithms Group Ltd, Oxford UK. 2006