E Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual

Keyword : eigenproblem

F01BVF   Reduction to standard form, generalized real symmetric-definite banded eigenproblem
F02FJF   Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
F02SDF   Eigenvector of generalized real banded eigenproblem by inverse iteration
F08SEF   Reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by F07FDF
F08SSF   Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, B factorized by F07FRF
F08TEF   Reduction to standard form of real symmetric-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by F07GDF
F08TSF   Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax=λBx, ABx=λx or BAx=λx, packed storage, B factorized by F07GRF
F08UEF   Reduction of real symmetric-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λy, such that C has the same bandwidth as A
F08USF   Reduction of complex Hermitian-definite banded generalized eigenproblem Ax=λBx to standard form Cy=λ y, such that C has the same bandwidth as A
F12AAF   Initialization routine for (F12ABF) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem
F12ABF   Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric sparse (standard or generalized) eigenproblem
F12ACF   Returns the converged approximations (as determined by F12ABF) to eigenvalues of a real nonsymmetric sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
F12AFF   Initialization routine for (F12AGF) computing selected eigenvalues and, optionally, eigenvectors of a real nonsymmetric banded (standard or generalized) eigenproblem
F12AGF   Computes approximations to selected eigenvalues of a real nonsymmetric banded (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
F12ANF   Initialization routine for (F12APF) computing selected eigenvalues and, optionally, eigenvectors of a complex sparse (standard or generalized) eigenproblem
F12APF   Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a complex sparse (standard or generalized) eigenproblem
F12AQF   Returns the converged approximations (as determined by F12ABF) to eigenvalues of a complex sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
F12FAF   Initialization routine for (F12FBF) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
F12FBF   Implements a reverse communication interface for the Implicitly Restarted Arnoldi iteration for computing selected eigenvalues and, optionally, eigenvectors of a real symmetric sparse (standard or generalized) eigenproblem
F12FCF   Returns the converged approximations (as determined by F12ABF) to eigenvalues of a real symmetric sparse (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace
F12FFF   Initialization routine for (F12FGF) computing selected eigenvalues and, optionally, eigenvectors of a real symmetric banded (standard or generalized) eigenproblem
F12FGF   Computes approximations to selected eigenvalues of a real symmetric banded (standard or generalized) eigenproblem and, optionally, the corresponding approximate eigenvectors and/or an orthonormal basis for the associated approximate invariant subspace

E Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual
The Numerical Algorithms Group Ltd, Oxford UK. 2006