Chapter Introduction (pdf version)
NAG Library Manual

F01 – Matrix Operations, Including Inversion

F01 Chapter Introduction
Routine
Name
Mark of
Introduction

Purpose
F01ABF
Example Text
Example Data
1 Inverse of real symmetric positive-definite matrix using iterative refinement
F01ADF
Example Text
Example Data
2 Inverse of real symmetric positive-definite matrix
F01BLF
Example Text
Example Data
5 Pseudo-inverse and rank of real m by n matrix (mn)
F01BRF
Example Text
Example Data
7 LU factorization of real sparse matrix
F01BSF
Example Text
Example Data
7 LU factorization of real sparse matrix with known sparsity pattern
F01BUF
Example Text
Example Data
7 ULDLTUT factorization of real symmetric positive-definite band matrix
F01BVF
Example Text
Example Data
7 Reduction to standard form, generalized real symmetric-definite banded eigenproblem
F01CKF
Example Text
2 Matrix multiplication
F01CRF
Example Text
7 Matrix transposition
F01CTF
Example Text
Example Data
14 Sum or difference of two real matrices, optional scaling and transposition
F01CWF
Example Text
Example Data
14 Sum or difference of two complex matrices, optional scaling and transposition
F01LEF
Example Text
Example Data
11 LU factorization of real tridiagonal matrix
F01LHF
Example Text
Example Data
13 LU factorization of real almost block diagonal matrix
F01MCF
Example Text
Example Data
8 LDLT factorization of real symmetric positive-definite variable-bandwidth matrix
F01QGF
Example Text
Example Data
14 RQ factorization of real m by n upper trapezoidal matrix (mn)
F01QJF
Example Text
Example Data
14 RQ factorization of real m by n matrix (mn)
F01QKF
Example Text
Example Data
14 Operations with orthogonal matrices, form rows of Q, after RQ factorization by F01QJF
F01RGF
Example Text
Example Data
14 RQ factorization of complex m by n upper trapezoidal matrix (mn)
F01RJF
Example Text
Example Data
14 RQ factorization of complex m by n matrix (mn)
F01RKF
Example Text
Example Data
14 Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF
F01ZAF
Example Text
Example Data
14 Convert real matrix between packed triangular and square storage schemes
F01ZBF
Example Text
Example Data
14 Convert complex matrix between packed triangular and square storage schemes
F01ZCF
Example Text
Example Data
14 Convert real matrix between packed banded and rectangular storage schemes
F01ZDF
Example Text
Example Data
14 Convert complex matrix between packed banded and rectangular storage schemes

Chapter Introduction (pdf version)
NAG Library Manual

The Numerical Algorithms Group Ltd, Oxford, UK. 2006