Chapter Introduction (pdf version)
NAG Library Manual

## D02 – Ordinary Differential Equations

D02 Chapter Introduction
D02MN Sub-chapter Introduction
 RoutineName Mark ofIntroduction Purpose D02AGFExample Text 2 ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined D02BGFExample Text 7 ODEs, IVP, Runge–Kutta–Merson method, until a component attains given value (simple driver) D02BHFExample Text 7 ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver) D02BJFExample Text 18 ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) D02CJFExample Text 13 ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver) D02EJFExample Text 12 ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver) D02GAFExample Text 8 ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem D02GBFExample Text 8 ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem D02HAFExample Text 8 ODEs, boundary value problem, shooting and matching, boundary values to be determined D02HBFExample Text 8 ODEs, boundary value problem, shooting and matching, general parameters to be determined D02JAFExample Text 8 ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation D02JBFExample Text 8 ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations D02KAFExample Text 7 Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only D02KDFExample Text 7 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points D02KEFExample Text 8 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points D02LAFExample Text 13 Second-order ODEs, IVP, Runge–Kutta–Nystrom method D02LXF 13 Second-order ODEs, IVP, setup for D02LAF D02LYF 13 Second-order ODEs, IVP, diagnostics for D02LAF D02LZF 13 Second-order ODEs, IVP, interpolation for D02LAF D02MVFExample Text 14 ODEs, IVP, DASSL method, setup for D02M–N routines D02MZF 14 ODEs, IVP, interpolation for D02M–N routines, natural interpolant D02NBFExample Text 12 Explicit ODEs, stiff IVP, full Jacobian (comprehensive) D02NCFExample Text 12 Explicit ODEs, stiff IVP, banded Jacobian (comprehensive) D02NDFExample Text 12 Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NGFExample Text 12 Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) D02NHFExample Text 12 Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive) D02NJFExample Text 12 Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NMFExample Text 12 Explicit ODEs, stiff IVP (reverse communication, comprehensive) D02NNFExample Text 12 Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive) D02NRF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, enquiry routine D02NSF 12 ODEs, IVP, for use with D02M–N routines, full Jacobian, linear algebra set up D02NTF 12 ODEs, IVP, for use with D02M–N routines, banded Jacobian, linear algebra set up D02NUF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, linear algebra set up D02NVF 12 ODEs, IVP, BDF method, setup for D02M–N routines D02NWF 12 ODEs, IVP, Blend method, setup for D02M–N routines D02NXF 12 ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routines D02NYF 12 ODEs, IVP, integrator diagnostics, for use with D02M–N routines D02NZF 12 ODEs, IVP, setup for continuation calls to integrator, for use with D02M–N routines D02PCFExample Text 16 ODEs, IVP, Runge–Kutta method, integration over range with output D02PDFExample Text 16 ODEs, IVP, Runge–Kutta method, integration over one step D02PVF 16 ODEs, IVP, setup for D02PCF and D02PDF D02PWFExample Text 16 ODEs, IVP, resets end of range for D02PDF D02PXFExample Text 16 ODEs, IVP, interpolation for D02PDF D02PYF 16 ODEs, IVP, integration diagnostics for D02PCF and D02PDF D02PZFExample Text 16 ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF D02QFFExample Text 13 ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) D02QGFExample Text 13 ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) D02QWF 13 ODEs, IVP, setup for D02QFF and D02QGF D02QXF 13 ODEs, IVP, diagnostics for D02QFF and D02QGF D02QYF 13 ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF D02QZFExample Text 13 ODEs, IVP, interpolation for D02QFF or D02QGF D02RAFExample Text 8 ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility D02SAFExample Text 8 ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined D02TGFExample Text 8 nth-order linear ODEs, boundary value problem, collocation and least-squares D02TKFExample Text 17 ODEs, general nonlinear boundary value problem, collocation technique D02TVFExample Text 17 ODEs, general nonlinear boundary value problem, setup for D02TKF D02TXFExample Text 17 ODEs, general nonlinear boundary value problem, continuation facility for D02TKF D02TYFExample Text 17 ODEs, general nonlinear boundary value problem, interpolation for D02TKF D02TZFExample Text 17 ODEs, general nonlinear boundary value problem, diagnostics for D02TKF D02XJF 12 ODEs, IVP, interpolation for D02M–N routines, natural interpolant D02XKF 12 ODEs, IVP, interpolation for D02M–N routines, C1 interpolant D02ZAF 12 ODEs, IVP, weighted norm of local error estimate for D02M–N routines

Chapter Introduction (pdf version)
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2006