Chapter Introduction (pdf version)
NAG Library Manual

D02 – Ordinary Differential Equations

D02 Chapter Introduction
D02MN Sub-chapter Introduction
Routine
Name
Mark of
Introduction

Purpose
D02AGF
Example Text
2 ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
D02BGF
Example Text
7 ODEs, IVP, Runge–Kutta–Merson method, until a component attains given value (simple driver)
D02BHF
Example Text
7 ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver)
D02BJF
Example Text
18 ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
D02CJF
Example Text
13 ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple driver)
D02EJF
Example Text
12 ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)
D02GAF
Example Text
8 ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
D02GBF
Example Text
8 ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem
D02HAF
Example Text
8 ODEs, boundary value problem, shooting and matching, boundary values to be determined
D02HBF
Example Text
8 ODEs, boundary value problem, shooting and matching, general parameters to be determined
D02JAF
Example Text
8 ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation
D02JBF
Example Text
8 ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations
D02KAF
Example Text
7 Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only
D02KDF
Example Text
7 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points
D02KEF
Example Text
8 Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
D02LAF
Example Text
13 Second-order ODEs, IVP, Runge–Kutta–Nystrom method
D02LXF 13 Second-order ODEs, IVP, setup for D02LAF
D02LYF 13 Second-order ODEs, IVP, diagnostics for D02LAF
D02LZF 13 Second-order ODEs, IVP, interpolation for D02LAF
D02MVF
Example Text
14 ODEs, IVP, DASSL method, setup for D02M–N routines
D02MZF 14 ODEs, IVP, interpolation for D02M–N routines, natural interpolant
D02NBF
Example Text
12 Explicit ODEs, stiff IVP, full Jacobian (comprehensive)
D02NCF
Example Text
12 Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)
D02NDF
Example Text
12 Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)
D02NGF
Example Text
12 Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)
D02NHF
Example Text
12 Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
D02NJF
Example Text
12 Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)
D02NMF
Example Text
12 Explicit ODEs, stiff IVP (reverse communication, comprehensive)
D02NNF
Example Text
12 Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive)
D02NRF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, enquiry routine
D02NSF 12 ODEs, IVP, for use with D02M–N routines, full Jacobian, linear algebra set up
D02NTF 12 ODEs, IVP, for use with D02M–N routines, banded Jacobian, linear algebra set up
D02NUF 12 ODEs, IVP, for use with D02M–N routines, sparse Jacobian, linear algebra set up
D02NVF 12 ODEs, IVP, BDF method, setup for D02M–N routines
D02NWF 12 ODEs, IVP, Blend method, setup for D02M–N routines
D02NXF 12 ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M–N routines
D02NYF 12 ODEs, IVP, integrator diagnostics, for use with D02M–N routines
D02NZF 12 ODEs, IVP, setup for continuation calls to integrator, for use with D02M–N routines
D02PCF
Example Text
16 ODEs, IVP, Runge–Kutta method, integration over range with output
D02PDF
Example Text
16 ODEs, IVP, Runge–Kutta method, integration over one step
D02PVF 16 ODEs, IVP, setup for D02PCF and D02PDF
D02PWF
Example Text
16 ODEs, IVP, resets end of range for D02PDF
D02PXF
Example Text
16 ODEs, IVP, interpolation for D02PDF
D02PYF 16 ODEs, IVP, integration diagnostics for D02PCF and D02PDF
D02PZF
Example Text
16 ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
D02QFF
Example Text
13 ODEs, IVP, Adams method with root-finding (forward communication, comprehensive)
D02QGF
Example Text
13 ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
D02QWF 13 ODEs, IVP, setup for D02QFF and D02QGF
D02QXF 13 ODEs, IVP, diagnostics for D02QFF and D02QGF
D02QYF 13 ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
D02QZF
Example Text
13 ODEs, IVP, interpolation for D02QFF or D02QGF
D02RAF
Example Text
8 ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
D02SAF
Example Text
8 ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
D02TGF
Example Text
8 nth-order linear ODEs, boundary value problem, collocation and least-squares
D02TKF
Example Text
17 ODEs, general nonlinear boundary value problem, collocation technique
D02TVF
Example Text
17 ODEs, general nonlinear boundary value problem, setup for D02TKF
D02TXF
Example Text
17 ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
D02TYF
Example Text
17 ODEs, general nonlinear boundary value problem, interpolation for D02TKF
D02TZF
Example Text
17 ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
D02XJF 12 ODEs, IVP, interpolation for D02M–N routines, natural interpolant
D02XKF 12 ODEs, IVP, interpolation for D02M–N routines, C1 interpolant
D02ZAF 12 ODEs, IVP, weighted norm of local error estimate for D02M–N routines

Chapter Introduction (pdf version)
NAG Library Manual

The Numerical Algorithms Group Ltd, Oxford, UK. 2006