
NAG Library Function Document

nag_rand_arma (g05phc)

1 Purpose

nag_rand_arma (g05phc) generates a realization of a univariate time series from an autoregressive
moving average (ARMA) model. The realization may be continued or a new realization generated at
subsequent calls to nag_rand_arma (g05phc).

2 Specification

#include <nag.h>
#include <nagg05.h>

void nag_rand_arma (Nag_ModeRNG mode, Integer n, double xmean, Integer ip,
const double phi[], Integer iq, const double theta[], double avar,
double r[], Integer lr, Integer state[], double *var, double x[],
NagError *fail)

3 Description

Let the vector xt, denote a time series which is assumed to follow an autoregressive moving average
(ARMA) model of the form:

xt � � ¼ �1 xt�1 � �ð Þ þ �2 xt�2 � �ð Þ þ � � � þ �p xt�p � �
� �

þ
�t � �1�t�1 � �2�t�2 � � � � � �q�t�q

where �t, is a residual series of independent random perturbations assumed to be Normally distributed
with zero mean and variance �2. The parameters �if g, for i ¼ 1; 2; . . . ; p, are called the autoregressive
(AR) parameters, and �j

� �
, for j ¼ 1; 2; . . . ; q, the moving average (MA) parameters. The parameters in

the model are thus the p � values, the q � values, the mean � and the residual variance �2.

nag_rand_arma (g05phc) sets up a reference vector containing initial values corresponding to a stationary
position using the method described in Tunnicliffe–Wilson (1979). The function can then return a
realization of x1; x2; . . . ; xn. On a successful exit, the recent history is updated and saved in the reference
vector r so that nag_rand_arma (g05phc) may be called again to generate a realization of xnþ1; xnþ2; . . .,
etc. See the description of the argument mode in Section 5 for details.

One of the initialization functions nag_rand_init_repeatable (g05kfc) (for a repeatable sequence if
computed sequentially) or nag_rand_init_nonrepeatable (g05kgc) (for a non-repeatable sequence) must
be called prior to the first call to nag_rand_arma (g05phc).

4 References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Tunnicliffe–Wilson G (1979) Some efficient computational procedures for high order ARMA models J.
Statist. Comput. Simulation 8 301–309

5 Arguments

1: mode – Nag_ModeRNG Input

On entry: a code for selecting the operation to be performed by the function.

mode ¼ Nag InitializeReference
Set up reference vector only.

g05 – Random Number Generators g05phc

Mark 24 g05phc.1

../G05/g05kfc.pdf
../G05/g05kgc.pdf

mode ¼ Nag GenerateFromReference
Generate terms in the time series using reference vector set up in a prior call to
nag_rand_arma (g05phc).

mode ¼ Nag InitializeAndGenerate
Set up reference vector and generate terms in the time series.

Constraint: mode ¼ Nag InitializeReference, Nag GenerateFromReference or
Nag InitializeAndGenerate.

2: n – Integer Input

On entry: n, the number of observations to be generated.

Constraint: n � 0.

3: xmean – double Input

On entry: the mean of the time series.

4: ip – Integer Input

On entry: p, the number of autoregressive coefficients supplied.

Constraint: ip � 0.

5: phi½ip� – const double Input

On entry: the autoregressive coefficients of the model, �1; �2; . . . ; �p.

6: iq – Integer Input

On entry: q, the number of moving average coefficients supplied.

Constraint: iq � 0.

7: theta½iq� – const double Input

On entry: the moving average coefficients of the model, �1; �2; . . . ; �q.

8: avar – double Input

On entry: �2, the variance of the Normal perturbations.

Constraint: avar � 0:0.

9: r½lr� – double Communication Array

On entry: if mode ¼ Nag GenerateFromReference, the reference vector from the previous call to
nag_rand_arma (g05phc).

On exit: the reference vector.

10: lr – Integer Input

On entry: the dimension of the array r.

Constraint: lr � ipþ iqþ 6þmax ip; iqþ 1ð Þ.

11: state½dim� – Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions that
must have been previously called. This array MUST be the same array passed as argument state in
the previous call to nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc).

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

g05phc NAG Library Manual

g05phc.2 Mark 24

../G05/g05kfc.pdf
../G05/g05kfc.pdf
../G05/g05kgc.pdf

12: var – double * Output

On exit: the proportion of the variance of a term in the series that is due to the moving-average
(error) terms in the model. The smaller this is, the nearer is the model to non-stationarity.

13: x½n� – double Output

On exit: contains the next n observations from the time series.

14: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ip ¼ valueh i.
Constraint: ip � 0.

On entry, iq ¼ valueh i.
Constraint: iq � 0.

On entry, lr is not large enough, lr ¼ valueh i: minimum length required ¼ valueh i.
On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

NE_PREV_CALL

ip or iq is not the same as when r was set up in a previous call.
Previous value of ip ¼ valueh i and ip ¼ valueh i.
Previous value of iq ¼ valueh i and iq ¼ valueh i.

NE_REAL

On entry, avar ¼ valueh i.
Constraint: avar � 0:0.

NE_REF_VEC

Reference vector r has been corrupted or not initialized correctly.

NE_STATIONARY_AR

On entry, the AR parameters are outside the stationarity region.

7 Accuracy

Any errors in the reference vector’s initial values should be very much smaller than the error term; see
Tunnicliffe–Wilson (1979).

g05 – Random Number Generators g05phc

Mark 24 g05phc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_rand_arma (g05phc) is essentially of order ipð Þ2.
Note: The reference vector, r, contains a copy of the recent history of the series. If attempting to re-
initialize the series by calling nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc) a call to nag_rand_arma (g05phc) with mode ¼ Nag InitializeReference must also be made.
In the repeatable case the calls to nag_rand_arma (g05phc) should be performed in the same order (at the
same point(s) in simulation) every time nag_rand_init_repeatable (g05kfc) is used. When the generator
state is saved and restored using the argument state, the time series reference vector must be saved and
restored as well.

The ARMA model for a time series can also be written as:

xn � Eð Þ ¼ A1 xn�1 � Eð Þ þ � � � þANA xn�NA � Eð Þ þB1an þ � � � þBNBan�NBþ1

where

xn is the observed value of the time series at time n,

NA is the number of autoregressive parameters, Ai,

NB is the number of moving average parameters, Bi,

E is the mean of the time series,

and

at is a series of independent random Standard Normal perturbations.

This is related to the form given in Section 3 by:

B2
1 ¼ �2,

Biþ1 ¼ ��i� ¼ ��iB1; i ¼ 1; 2; . . . ; q,

NB ¼ q þ 1,

E ¼ �,

Ai ¼ �i; i ¼ 1; 2; . . . ; p,

NA ¼ p.

10 Example

This example generates values for an autoregressive model given by

xt ¼ 0:4xt�1 þ 0:2xt�2 þ �t
where �t is a series of independent random Normal perturbations with variance 1:0. The random number
generators are initialized by nag_rand_init_repeatable (g05kfc) and then nag_rand_arma (g05phc) is
called to initialize a reference vector and generate a sample of ten observations.

10.1 Program Text

/* nag_rand_arma (g05phc) Example Program.
*
* Copyright 2008, Numerical Algorithms Group.
*
* Mark 9, 2009.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <math.h>

g05phc NAG Library Manual

g05phc.4 Mark 24

../G05/g05kfc.pdf
../G05/g05kgc.pdf
../G05/g05kgc.pdf
../G05/g05kfc.pdf
../G05/g05kfc.pdf

#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>

int main(void)
{

/* Integer scalar and array declarations */
Integer exit_status = 0;
Integer lr, i, lstate;
Integer *state = 0;

/* Nag structures */
NagError fail;
Nag_ModeRNG mode;

/* Double scalar and array declarations */
double var;
double *r = 0, *x = 0;

/* Set the number of observations to generate */
Integer n = 10;

/* Set up the parameters for the series being generated */
Integer ip = 2;
Integer iq = 0;
double phi[] = { 0.4e0, 0.2e0 };
double xmean = 0.0e0;
double avar = 1.0e0;
/* Need a dummy, non-null theta, even if we are not using it */
double theta[] = { 0.0e0 };

/* Choose the base generator */
Nag_BaseRNG genid = Nag_Basic;
Integer subid = 0;

/* Set the seed */
Integer seed[] = { 1762543 };
Integer lseed = 1;

/* Initialise the error structure */
INIT_FAIL(fail);

printf("nag_rand_arma (g05phc) Example Program Results\n\n");

/* Get the length of the state array */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Calculate the size of the reference vector */
lr = (ip > iq + 1)?ip:iq + 1;
lr += ip+iq+6;

/* Allocate arrays */
if (!(r = NAG_ALLOC(lr, double)) ||

!(x = NAG_ALLOC(n, double)) ||
!(state = NAG_ALLOC(lstate, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Initialise the generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);

g05 – Random Number Generators g05phc

Mark 24 g05phc.5

if (fail.code != NE_NOERROR)
{

printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Set up the reference vector and generate the N realizations */
mode = Nag_InitializeAndGenerate;
nag_rand_arma(mode, n, xmean, ip, phi, iq, theta, avar, r, lr, state,

&var, x, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_rand_arma (g05phc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

/* Display the variates */
for (i = 0; i < n; i++)

printf(" %12.4f\n", x[i]);

END:
NAG_FREE(r);
NAG_FREE(x);
NAG_FREE(state);

return exit_status;
}

10.2 Program Data

None.

10.3 Program Results

nag_rand_arma (g05phc) Example Program Results

-1.7103
-0.4042
-0.1845
-1.5004
-1.1946
-1.8184
-1.0895
1.6408
1.3555
1.1908

g05phc NAG Library Manual

g05phc.6 (last) Mark 24

	g05phc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Knuth (1981)
	Tunnicliffe-Wilson (1979)

	5 Arguments
	mode
	n
	xmean
	ip
	phi
	iq
	theta
	avar
	r
	lr
	state
	var
	x
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_PREV_CALL
	NE_REAL
	NE_REF_VEC
	NE_STATIONARY_AR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

