NAG Library Function Document nag_mv_discrim (g03dac)

1 Purpose

nag_mv_discrim (g03dac) computes a test statistic for the equality of within-group covariance matrices and also computes matrices for use in discriminant analysis.

2 Specification

```
#include <nag.h>
#include <nagg03.h>
void nag_mv_discrim (Integer n, Integer m, const double x[], Integer tdx,
    const Integer isx[], Integer nvar, const Integer ing[], Integer ng,
    const double wt[], Integer nig[], double gmean[], Integer tdg,
    double det[], double gc[], double *stat, double *df, double *sig,
    NagError *fail)
```


3 Description

Let a sample of n observations on p variables come from n_{g} groups with n_{j} observations in the j th group and $\sum n_{j}=n$. If the data is assumed to follow a multivariate Normal distribution with the variance-covariance matrix of the j th group Σ_{j}, then to test for equality of the variance-covariance matrices between groups, that is, $\Sigma_{1}=\Sigma_{2}=\cdots=\Sigma_{n_{g}}=\Sigma$, the following likelihood-ratio test statistic, G, can be used;

$$
G=C\left\{\left(n-n_{g}\right) \log |S|-\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) \log \left|S_{j}\right|\right\}
$$

where

$$
C=1-\frac{2 p^{2}+3 p-1}{6(p+1)\left(n_{g}-1\right)}\left(\sum_{j=1}^{n_{g}} \frac{1}{\left(n_{j}-1\right)}-\frac{1}{\left(n-n_{g}\right)}\right)
$$

and S_{j} are the within-group variance-covariance matrices and S is the pooled variance-covariance matrix given by

$$
S=\frac{\sum_{j=1}^{n_{g}}\left(n_{j}-1\right) S_{j}}{\left(n-n_{g}\right)}
$$

For large n, G is approximately distributed as a χ^{2} variable with $\frac{1}{2} p(p+1)\left(n_{g}-1\right)$ degrees of freedom, see Morrison (1967) for further comments. If weights are used, then S and S_{j} are the weighted pooled and within-group variance-covariance matrices and n is the effective number of observations, that is, the sum of the weights.
Instead of calculating the within-group variance-covariance matrices and then computing their determinants in order to calculate the test statistic, nag_mv_discrim (g03dac) uses a $Q R$ decomposition. The group means are subtracted from the data and then for each group, a $Q R$ decomposition is computed to give an upper triangular matrix R_{j}^{*}. This matrix can be scaled to give a matrix R_{j} such that $S_{j}=R_{j}^{\mathrm{T}} R_{j}$. The pooled R matrix is then computed from the R_{j} matrices. The values of $|S|$ and the $\left|S_{j}\right|$ can then be calculated from the diagonal elements of R and the R_{j}.

This approach means that the Mahalanobis squared distances for a vector observation x can be computed as $z^{\mathrm{T}} z$, where $R_{j} z=\left(x-\bar{x}_{j}\right), \bar{x}_{j}$ being the vector of means of the j th group. These distances can be
calculated by nag_mv_discrim_mahaldist (g03dbc). The distances are used in discriminant analysis and nag_mv_discrim_group (g03dcc) uses the results of nag_mv_discrim (g03dac) to perform several different types of discriminant analysis. The differences between the discriminant methods are, in part, due to whether or not the within-group variance-covariance matrices are equal.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge
Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press
Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Arguments

1: $\quad \mathbf{n}$ - Integer
Input
On entry: the number of observations, n.
Constraint: $\mathbf{n} \geq 1$.

2: $\quad \mathbf{m}$ - Integer
Input
On entry: the number of variables in the data array \mathbf{x}.
Constraint: $\mathbf{m} \geq$ nvar.

3: $\quad \mathbf{x}[\mathbf{n} \times \mathbf{t d x}]-$ const double
Input
On entry: $\mathbf{x}[(k-1) \times \mathbf{t d x}+l-1]$ must contain the k th observation for the l th variable, for $k=1,2, \ldots, n$ and $l=1,2, \ldots, \mathbf{m}$.

4: tdx - Integer
Input
On entry: the stride separating matrix column elements in the array \mathbf{x}.
Constraint: $\mathbf{t d x} \geq \mathbf{m}$.
5: $\quad \mathbf{i s} \mathbf{x}[\mathbf{m}]$ - const Integer
Input
On entry: isx $[l-1]$ indicates whether or not the l th variable in \mathbf{x} is to be included in the variancecovariance matrices.
If isx $[l-1]>0$ the l th variable is included, for $l=1,2, \ldots, \mathbf{m}$; otherwise it is not referenced.
Constraint: isx $[l-1]>0$ for nvar values of l.
6: \quad nvar - Integer
Input
On entry: the number of variables in the variance-covariance matrices, p.
Constraint: nvar ≥ 1.
7: $\quad \mathbf{i n g}[\mathbf{n}]$ - const Integer Input
On entry: ing $[k-1]$ indicates to which group the k th observation belongs, for $k=1,2, \ldots, n$.
Constraint: $1 \leq \mathbf{i n g}[k-1] \leq \mathbf{n g}$, for $k=1,2, \ldots, n$
The values of ing must be such that each group has at least nvar members

8: ng - Integer Input
On entry: the number of groups, n_{g}.
Constraint: $\mathbf{n g} \geq 2$.
9: $\quad \mathbf{w t}[\mathbf{n}]$ - const double
Input
On entry: the elements of wt must contain the weights to be used in the analysis and the effective number of observations for a group is the sum of the weights of the observations in that group. If $\mathbf{w t}[k-1]=0.0$ then the k th observation is excluded from the calculations.
If weights are not provided then wt must be set to NULL and the effective number of observations for a group is the number of observations in that group.

Constraints:
if $\mathbf{w t}$ is not NULL, $\mathbf{w t}[k-1] \geq 0.0$, for $k=1,2, \ldots, n$;
the effective number of observations for each group must be greater than 1.
10: $\quad \mathbf{n i g}[\mathbf{n g}]$ - Integer
Output
On exit: $\mathbf{n i g}[j-1]$ contains the number of observations in the j th group, for $j=1,2, \ldots, n_{g}$.
11: $\quad \mathbf{g m e a n}[\mathbf{n g} \times \mathbf{t d g}]-$ double
Output
Note: the (i, j) th element of the matrix is stored in gmean $[(i-1) \times \mathbf{t d g}+j-1]$.
On exit: the j th row of gmean contains the means of the p selected variables for the j th group, for $j=1,2, \ldots, n_{g}$.

12: $\quad \mathbf{t d g}$ - Integer
Input
On entry: the stride separating matrix column elements in the array gmean.
Constraint: $\boldsymbol{t d g} \geq$ nvar.
13: $\quad \operatorname{det}[\mathbf{n g}]$ - double
Output
On exit: the logarithm of the determinants of the within-group variance-covariance matrices.

14: $\quad \mathbf{g c}[\mathrm{dim}]$ - double
Output
Note: the dimension, dim, of the array ge must be at least $(\mathbf{n g}+1) \times$ nvar $\times($ nvar +1$) / 2$.
On exit: the first $p(p+1) / 2$ elements of ge contain R and the remaining n_{g} blocks of $p(p+1) / 2$ elements contain the R_{j} matrices. All are stored in packed form by columns.

15: stat - double *
Output
On exit: the likelihood-ratio test static, G.

16: $\quad \mathbf{d f}$ - double *
Output
On exit: the degrees of freedom for the distribution of G.
17: $\quad \mathbf{s i g}$ - double *
Output
On exit: the significance level for G.
18: fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, $\mathbf{m}=\langle$ value \rangle while nvar $=\langle$ value \rangle. These arguments must satisfy $\mathbf{m} \geq$ nvar.
On entry, $\mathbf{t d g}=\langle$ value \rangle while nvar $=\langle$ value \rangle. These arguments must satisfy $\mathbf{t d g} \geq$ nvar.
On entry, $\mathbf{t d x}=\langle$ value \rangle while $\mathbf{m}=\langle$ value \rangle. These arguments must satisfy $\mathbf{t d x} \geq \mathbf{m}$.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_GROUP_OBSERV

On entry, group $\langle v a l u e\rangle$ has $\langle v a l u e\rangle$ effective observations.
Constraint: in each group the effective number of observations must be ≥ 1.

NE_GROUP_VAR

On entry, group \langle value \rangle has \langle value \rangle members, while nvar $=\langle v a l u e\rangle$.
Constraint: number of members in each group \geq nvar.

NE_GROUP_VAR_RANK

The variables in group \langle value〉 are not of full rank.

NE_INT_ARG_LT

On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 1$.
On entry, $\mathbf{n g}=\langle$ value \rangle.
Constraint: $\mathbf{n g} \geq 2$.
On entry, nvar $=\langle$ value \rangle.
Constraint: nvar ≥ 1.

NE_INTARR_INT

On entry, ing $[\langle$ value $\rangle]=\langle$ value $\rangle, \mathbf{n g}=\langle$ value \rangle.
Constraint: $1 \leq \mathbf{i n g}[i-1] \leq \mathbf{n g}$, for $i=1,2, \ldots, n$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT_ELEMENT

On entry, wt $[\langle$ value $\rangle]=\langle$ value \rangle.
Constraint: when referenced, all elements of wt must be non-negative.

NE_VAR_INCL_INDICATED

The number of variables, nvar in the analysis $=\langle v a l u e\rangle$, while number of variables included in the analysis via array isx $=\langle$ value \rangle. Constraint: these two numbers must be the same.

NE_VAR_RANK

The variables are not of full rank.

$7 \quad$ Accuracy

The accuracy is dependent on the accuracy of the computation of the $Q R$ decomposition.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time will be approximately proportional to $n p^{2}$.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr}$) of two steroid metabolites. Observations for a total of 21 patients are input and the statistics computed by nag_mv_discrim (g03dac). The printed results show that there is evidence that the within-group variance-covariance matrices are not equal.

10.1 Program Text

```
/* nag_mv_discrim (g03dac) Example Program.
    *
    * Copyright }1998\mathrm{ Numerical Algorithms Group.
    *
    * Mark 5, 1998.
    * Mark 8 revised, 2004.
    *
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>
#define GMEAN(I, J) gmean[(I) *tdgmean + J]
#define X(I, J) x[(I) *tdx + J]
int main(void)
{
    Integer exit_status = 0, i, *ing = 0, *isx = 0, j, m, n, ng, *nig = 0, nvar,
        tdgmean;
    Integer tdx;
    NagError fail;
    char weight[2];
    double *det = 0, df, *gc = 0, *gmean = 0, sig, stat, *wt = 0, *wtptr = 0;
    double ** = 0;
    INIT_FAIL(fail);
    printf("nag_mv_discrim (g03dac) Example Program Results\n\n");
    /* Skip headings in data file */
    scanf("%*[^\n]");
    scanf("%ld", &n);
    scanf("%ld", &m);
    scanf("%ld", &nvar);
    scanf("%ld", &ng);
    scanf("%1s", weight);
    if (n >= 1&& nvar >= 1 && m >= nvar && ng >= 2)
    {
        if (!(det = NAG_ALLOC(ng, double)) ||
            !(gc = NAG_ALLOC((ng+1)*nvar*(nvar+1)/2, double)) ||
            !(gmean = NAG_ALLOC(ng*nvar, double)) ||
            !(wt = NAG_ALLOC(n, double)) ||
            !(x = NAG_\overline{ALLOC (n*m, double)) ||}
            !(ing = NAG_ALLOC(n, Integer)) ||
            !(isx = NAG_ALLOC(m, Integer)) ||
            !(nig = NAG_ALLOC(ng, Integer)))
        {
            printf("Allocation failure\n");
```

```
            exit_status = -1;
                goto END;
            }
        tdgmean = nvar;
        tdx = m;
    }
else
    {
        printf("Invalid n or nvar or m or ng.\n");
        exit_status = 1;
        return exit_status;
    }
    if (*weight == 'W')
    {
        for (i = 0; i < n; ++i)
            for (j = 0; j < m; ++j)
                    scanf("%lf", &X(i, j));
                scanf("%ld", &ing[i]);
                scanf("%lf", &wt[i]);
            }
        wtptr = wt;
    }
    else
        for (i = 0; i < n; ++i)
            {
                for (j = 0; j < m; ++j)
                    scanf("%lf", &X(i, j));
                scanf("%ld", &ing[i]);
            }
    }
    for (j = 0; j < m; ++j)
    scanf("%ld", &isx[j]);
    /* nag_mv_discrim (g03dac).
    * Test for equality of within-group covariance matrices
    */
    nag_mv_discrim(n, m, x, tdx, isx, nvar, ing, ng, wtptr, nig,
                gmean, tdgmean, det, gc, &stat, &df, &sig, &fail);
    if (fail.code != NE_NOERROR)
            {
        printf("Error from nag_mv_discrim (g03dac).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    printf("\nGroup means\n\n");
    for (i = 0; i < ng; ++i)
    {
        for (j = 0; j < nvar; ++j)
            printf("%10.4f", GMEAN(i, j));
        printf("\n");
    }
    printf("\nLOG of determinants\n\n");
    for (j = 0; j < ng; ++j)
    printf("%10.4f", det[j]);
    printf("\n\n%s%7.4f\n", "stat = ", stat);
    printf("%s%7.4f\n", " df = ", df);
    printf("%s%7.4f\n", " sig = ", sig);
END:
    NAG_FREE(det);
    NAG_FREE(gc);
    NAG_FREE(gmean);
    NAG_FREE(wt);
    NAG_FREE(x);
    NAG_FREE(ing);
    NAG_FREE(isx);
    NAG_FREE(nig);
    return exit_status;
}
```


10.2 Program Data

```
nag_mv_discrim (g03dac) Example Program Data
    21 2 2 3 U
    1.1314 2.4596 1
    1.0986 0.2624 1
    0.6419 -2.3026 1
    1.3350 -3.2189 1
    1.4110 0.0953 1
    0.6419 -0.9163 1
    2.1163 0.0000 2
    1.3350 -1.6094 2
    1.3610 -0.5108 2
    2.0541 0.1823 2
    2.2083 -0.5108 2
    2.7344 1.2809 2
    2.0412 0.4700 2
    1.8718 -0.9163 2
    1.7405 -0.9163 2
    2.6101 0.4700 2
    2.3224 1.8563 3
    2.2192 2.0669 3
    2.2618 1.1314 3
    3.9853 0.9163 3
    2.7600 2.0281 3
```


10.3 Program Results

```
nag_mv_discrim (g03dac) Example Program Results
Group means
```



```
LOG of determinants
    -0.8273 -3.0460 -2.2877
stat = 19.2410
    df = 6.0000
    sig=0.0038
```

