f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_ztrcon (f07tuc)

## 1  Purpose

nag_ztrcon (f07tuc) estimates the condition number of a complex triangular matrix.

## 2  Specification

 #include #include
 void nag_ztrcon (Nag_OrderType order, Nag_NormType norm, Nag_UploType uplo, Nag_DiagType diag, Integer n, const Complex a[], Integer pda, double *rcond, NagError *fail)

## 3  Description

nag_ztrcon (f07tuc) estimates the condition number of a complex triangular matrix $A$, in either the $1$-norm or the $\infty$-norm:
 $κ1 A = A1 A-11 or κ∞ A = A∞ A-1∞ .$
Note that ${\kappa }_{\infty }\left(A\right)={\kappa }_{1}\left({A}^{\mathrm{T}}\right)$.
Because the condition number is infinite if $A$ is singular, the function actually returns an estimate of the reciprocal of the condition number.
The function computes ${‖A‖}_{1}$ or ${‖A‖}_{\infty }$ exactly, and uses Higham's implementation of Hager's method (see Higham (1988)) to estimate ${‖{A}^{-1}‖}_{1}$ or ${‖{A}^{-1}‖}_{\infty }$.

## 4  References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     normNag_NormTypeInput
On entry: indicates whether ${\kappa }_{1}\left(A\right)$ or ${\kappa }_{\infty }\left(A\right)$ is estimated.
${\mathbf{norm}}=\mathrm{Nag_OneNorm}$
${\kappa }_{1}\left(A\right)$ is estimated.
${\mathbf{norm}}=\mathrm{Nag_InfNorm}$
${\kappa }_{\infty }\left(A\right)$ is estimated.
Constraint: ${\mathbf{norm}}=\mathrm{Nag_OneNorm}$ or $\mathrm{Nag_InfNorm}$.
3:     uploNag_UploTypeInput
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
4:     diagNag_DiagTypeInput
On entry: indicates whether $A$ is a nonunit or unit triangular matrix.
${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$
$A$ is a nonunit triangular matrix.
${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$
$A$ is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be $1$.
Constraint: ${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$ or $\mathrm{Nag_UnitDiag}$.
5:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6:     a[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ triangular matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
If ${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
7:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
8:     rconddouble *Output
On exit: an estimate of the reciprocal of the condition number of $A$. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, $A$ is singular to working precision.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The computed estimate rcond is never less than the true value $\rho$, and in practice is nearly always less than $10\rho$, although examples can be constructed where rcond is much larger.

A call to nag_ztrcon (f07tuc) involves solving a number of systems of linear equations of the form $Ax=b$ or ${A}^{\mathrm{H}}x=b$; the number is usually $5$ and never more than $11$. Each solution involves approximately $4{n}^{2}$ real floating point operations but takes considerably longer than a call to nag_ztrtrs (f07tsc) with one right-hand side, because extra care is taken to avoid overflow when $A$ is approximately singular.
The real analogue of this function is nag_dtrcon (f07tgc).

## 9  Example

This example estimates the condition number in the $1$-norm of the matrix $A$, where
 $A= 4.78+4.56i 0.00+0.00i 0.00+0.00i 0.00+0.00i 2.00-0.30i -4.11+1.25i 0.00+0.00i 0.00+0.00i 2.89-1.34i 2.36-4.25i 4.15+0.80i 0.00+0.00i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-0.26i .$
The true condition number in the $1$-norm is $70.27$.

### 9.1  Program Text

Program Text (f07tuce.c)

### 9.2  Program Data

Program Data (f07tuce.d)

### 9.3  Program Results

Program Results (f07tuce.r)