nag_zsptrs (f07qsc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

NAG Library Function Document

nag_zsptrs (f07qsc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zsptrs (f07qsc) solves a complex symmetric system of linear equations with multiple right-hand sides,
AX=B ,
where A has been factorized by nag_zsptrf (f07qrc), using packed storage.

2  Specification

#include <nag.h>
#include <nagf07.h>
void  nag_zsptrs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs, const Complex ap[], const Integer ipiv[], Complex b[], Integer pdb, NagError *fail)

3  Description

nag_zsptrs (f07qsc) is used to solve a complex symmetric system of linear equations AX=B, the function must be preceded by a call to nag_zsptrf (f07qrc) which computes the Bunch–Kaufman factorization of A, using packed storage.
If uplo=Nag_Upper, A=PUDUTPT, where P is a permutation matrix, U is an upper triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by solving PUDY=B and then UTPTX=Y.
If uplo=Nag_Lower, A=PLDLTPT, where L is a lower triangular matrix; the solution X is computed by solving PLDY=B and then LTPTX=Y.

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies how A has been factorized.
uplo=Nag_Upper
A=PUDUTPT, where U is upper triangular.
uplo=Nag_Lower
A=PLDLTPT, where L is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     nIntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     nrhsIntegerInput
On entry: r, the number of right-hand sides.
Constraint: nrhs0.
5:     ap[dim]const ComplexInput
Note: the dimension, dim, of the array ap must be at least max1,n×n+1/2.
On entry: the factorization of A stored in packed form, as returned by nag_zsptrf (f07qrc).
6:     ipiv[dim]const IntegerInput
Note: the dimension, dim, of the array ipiv must be at least max1,n.
On entry: details of the interchanges and the block structure of D, as returned by nag_zsptrf (f07qrc).
7:     b[dim]ComplexInput/Output
Note: the dimension, dim, of the array b must be at least
  • max1,pdb×nrhs when order=Nag_ColMajor;
  • max1,n×pdb when order=Nag_RowMajor.
The i,jth element of the matrix B is stored in
  • b[j-1×pdb+i-1] when order=Nag_ColMajor;
  • b[i-1×pdb+j-1] when order=Nag_RowMajor.
On entry: the n by r right-hand side matrix B.
On exit: the n by r solution matrix X.
8:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
  • if order=Nag_ColMajor, pdbmax1,n;
  • if order=Nag_RowMajor, pdbmax1,nrhs.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, n=value.
Constraint: n0.
On entry, nrhs=value.
Constraint: nrhs0.
On entry, pdb=value.
Constraint: pdb>0.
NE_INT_2
On entry, pdb=value and n=value.
Constraint: pdbmax1,n.
On entry, pdb=value and nrhs=value.
Constraint: pdbmax1,nrhs.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7  Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where cn is a modest linear function of n, and ε is the machine precision.
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x cncondA,xε
where condA,x=A-1Ax/xcondA=A-1AκA.
Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_zsprfs (f07qvc), and an estimate for κA (=κ1A) can be obtained by calling nag_zspcon (f07quc).

8  Further Comments

The total number of real floating point operations is approximately 8n2r.
This function may be followed by a call to nag_zsprfs (f07qvc) to refine the solution and return an error estimate.
The real analogue of this function is nag_dsptrs (f07pec).

9  Example

This example solves the system of equations AX=B, where
A= -0.39-0.71i 5.14-0.64i -7.86-2.96i 3.80+0.92i 5.14-0.64i 8.86+1.81i -3.52+0.58i 5.32-1.59i -7.86-2.96i -3.52+0.58i -2.83-0.03i -1.54-2.86i 3.80+0.92i 5.32-1.59i -1.54-2.86i -0.56+0.12i
and
B= -55.64+41.22i -19.09-35.97i -48.18+66.00i -12.08-27.02i -0.49-01.47i 6.95+20.49i -6.43+19.24i -4.59-35.53i .
Here A is symmetric, stored in packed form, and must first be factorized by nag_zsptrf (f07qrc).

9.1  Program Text

Program Text (f07qsce.c)

9.2  Program Data

Program Data (f07qsce.d)

9.3  Program Results

Program Results (f07qsce.r)


nag_zsptrs (f07qsc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012