f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zpbtrs (f07hsc)

## 1  Purpose

nag_zpbtrs (f07hsc) solves a complex Hermitian positive definite band system of linear equations with multiple right-hand sides,
 $AX=B ,$
where $A$ has been factorized by nag_zpbtrf (f07hrc).

## 2  Specification

 #include #include
 void nag_zpbtrs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd, Integer nrhs, const Complex ab[], Integer pdab, Complex b[], Integer pdb, NagError *fail)

## 3  Description

nag_zpbtrs (f07hsc) is used to solve a complex Hermitian positive definite band system of linear equations $AX=B$, the function must be preceded by a call to nag_zpbtrf (f07hrc) which computes the Cholesky factorization of $A$. The solution $X$ is computed by forward and backward substitution.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $A={U}^{\mathrm{H}}U$, where $U$ is upper triangular; the solution $X$ is computed by solving ${U}^{\mathrm{H}}Y=B$ and then $UX=Y$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $A=L{L}^{\mathrm{H}}$, where $L$ is lower triangular; the solution $X$ is computed by solving $LY=B$ and then ${L}^{\mathrm{H}}X=Y$.

## 4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies how $A$ has been factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A={U}^{\mathrm{H}}U$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A=L{L}^{\mathrm{H}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     kdIntegerInput
On entry: ${k}_{d}$, the number of superdiagonals or subdiagonals of the matrix $A$.
Constraint: ${\mathbf{kd}}\ge 0$.
5:     nrhsIntegerInput
On entry: $r$, the number of right-hand sides.
Constraint: ${\mathbf{nrhs}}\ge 0$.
6:     ab[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$.
On entry: the Cholesky factor of $A$, as returned by nag_zpbtrf (f07hrc).
7:     pdabIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
8:     b[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n$ by $r$ right-hand side matrix $B$.
On exit: the $n$ by $r$ solution matrix $X$.
9:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
10:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{kd}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}>0$.
On entry, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdb}}>0$.
NE_INT_2
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$ and ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
On entry, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$ and ${\mathbf{nrhs}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

For each right-hand side vector $b$, the computed solution $x$ is the exact solution of a perturbed system of equations $\left(A+E\right)x=b$, where
• if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, $\left|E\right|\le c\left(k+1\right)\epsilon \left|{U}^{\mathrm{H}}\right|\left|U\right|$;
• if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, $\left|E\right|\le c\left(k+1\right)\epsilon \left|L\right|\left|{L}^{\mathrm{H}}\right|$,
$c\left(k+1\right)$ is a modest linear function of $k+1$, and $\epsilon$ is the machine precision.
If $\stackrel{^}{x}$ is the true solution, then the computed solution $x$ satisfies a forward error bound of the form
 $x-x^∞ x∞ ≤ck+1condA,xε$
where $\mathrm{cond}\left(A,x\right)={‖\left|{A}^{-1}\right|\left|A\right|\left|x\right|‖}_{\infty }/{‖x‖}_{\infty }\le \mathrm{cond}\left(A\right)={‖\left|{A}^{-1}\right|\left|A\right|‖}_{\infty }\le {\kappa }_{\infty }\left(A\right)$. Note that $\mathrm{cond}\left(A,x\right)$ can be much smaller than $\mathrm{cond}\left(A\right)$.
Forward and backward error bounds can be computed by calling nag_zpbrfs (f07hvc), and an estimate for ${\kappa }_{\infty }\left(A\right)$ ($\text{}={\kappa }_{1}\left(A\right)$) can be obtained by calling nag_zpbcon (f07huc).

The total number of real floating point operations is approximately $16nkr$, assuming $n\gg k$.
This function may be followed by a call to nag_zpbrfs (f07hvc) to refine the solution and return an error estimate.
The real analogue of this function is nag_dpbtrs (f07hec).

## 9  Example

This example solves the system of equations $AX=B$, where
 $A= 9.39+0.00i 1.08-1.73i 0.00+0.00i 0.00+0.00i 1.08+1.73i 1.69+0.00i -0.04+0.29i 0.00+0.00i 0.00+0.00i -0.04-0.29i 2.65+0.00i -0.33+2.24i 0.00+0.00i 0.00+0.00i -0.33-2.24i 2.17+0.00i$
and
 $B= -12.42+68.42i 54.30-56.56i -9.93+00.88i 18.32+04.76i -27.30-00.01i -4.40+09.97i 5.31+23.63i 9.43+01.41i .$
Here $A$ is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by nag_zpbtrf (f07hrc).

### 9.1  Program Text

Program Text (f07hsce.c)

### 9.2  Program Data

Program Data (f07hsce.d)

### 9.3  Program Results

Program Results (f07hsce.r)