f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_dpotrf (f07fdc)

## 1  Purpose

nag_dpotrf (f07fdc) computes the Cholesky factorization of a real symmetric positive definite matrix.

## 2  Specification

 #include #include
 void nag_dpotrf (Nag_OrderType order, Nag_UploType uplo, Integer n, double a[], Integer pda, NagError *fail)

## 3  Description

nag_dpotrf (f07fdc) forms the Cholesky factorization of a real symmetric positive definite matrix $A$ either as $A={U}^{\mathrm{T}}U$ if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $A=L{L}^{\mathrm{T}}$ if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, where $U$ is an upper triangular matrix and $L$ is lower triangular.

## 4  References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of $A$ is stored and how $A$ is to be factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangular part of $A$ is stored and $A$ is factorized as ${U}^{\mathrm{T}}U$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangular part of $A$ is stored and $A$ is factorized as $L{L}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     a[$\mathit{dim}$]doubleInput/Output
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ symmetric positive definite matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the upper or lower triangle of $A$ is overwritten by the Cholesky factor $U$ or $L$ as specified by uplo.
5:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_POS_DEF
The leading minor of order $〈\mathit{\text{value}}〉$ is not positive definite and the factorization could not be completed. Hence $A$ itself is not positive definite. This may indicate an error in forming the matrix $A$. To factorize a matrix which is not positive definite, call nag_dsytrf (f07mdc) instead.

## 7  Accuracy

If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the computed factor $U$ is the exact factor of a perturbed matrix $A+E$, where
 $E≤cnεUTU ,$
$c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision. If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, a similar statement holds for the computed factor $L$. It follows that $\left|{e}_{ij}\right|\le c\left(n\right)\epsilon \sqrt{{a}_{ii}{a}_{jj}}$.

The total number of floating point operations is approximately $\frac{1}{3}{n}^{3}$.
A call to nag_dpotrf (f07fdc) may be followed by calls to the functions:
The complex analogue of this function is nag_zpotrf (f07frc).

## 9  Example

This example computes the Cholesky factorization of the matrix $A$, where
 $A= 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.18 0.56 -0.83 0.76 0.34 -0.10 1.18 0.34 1.18 .$

### 9.1  Program Text

Program Text (f07fdce.c)

### 9.2  Program Data

Program Data (f07fdce.d)

### 9.3  Program Results

Program Results (f07fdce.r)