f01 Chapter Contents
f01 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_matop_complex_herm_matrix_exp (f01fdc)

## 1  Purpose

nag_matop_complex_herm_matrix_exp (f01fdc) computes the matrix exponential, ${e}^{A}$, of a complex Hermitian $n$ by $n$ matrix $A$.

## 2  Specification

 #include #include
 void nag_matop_complex_herm_matrix_exp (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[], Integer pda, NagError *fail)

## 3  Description

${e}^{A}$ is computed using a spectral factorization of $A$
 $A = Q D QH ,$
where $D$ is the diagonal matrix whose diagonal elements, ${d}_{i}$, are the eigenvalues of $A$, and $Q$ is a unitary matrix whose columns are the eigenvectors of $A$. ${e}^{A}$ is then given by
 $eA = Q eD QH ,$
where ${e}^{D}$ is the diagonal matrix whose $i$th diagonal element is ${e}^{{d}_{i}}$. See for example Section 4.5 of Higham (2008).

## 4  References

Higham N J (2005) The scaling and squaring method for the matrix exponential revisited SIAM J. Matrix Anal. Appl. 26(4) 1179–1193
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later SIAM Rev. 45 3–49

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangle of the matrix $A$ is stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangle of the matrix $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     a[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least ${\mathbf{pda}}×{\mathbf{n}}$.
On entry: the $n$ by $n$ Hermitian matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the upper or lower triangular part of the $n$ by $n$ matrix exponential, ${e}^{A}$.
5:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge {\mathbf{n}}$.
6:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_CONVERGENCE
The computation of the spectral factorization failed to converge.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge {\mathbf{n}}$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

For an Hermitian matrix $A$, the matrix ${e}^{A}$, has the relative condition number
 $κA = A2 ,$
which is the minimal possible for the matrix exponential and so the computed matrix exponential is guaranteed to be close to the exact matrix. See Section 10.2 of Higham (2008) for details and further discussion.

The cost of the algorithm is $O\left({n}^{3}\right)$.
As well as the excellent book cited above, the classic reference for the computation of the matrix exponential is Moler and Van Loan (2003).

## 9  Example

This example finds the matrix exponential of the Hermitian matrix
 $A = 1 2+2i 3+2i 4+3i 2-2i 1 2+2i 3+2i 3-2i 2-2i 1 2+2i 4-3i 3-2i 2-2i 1 .$

### 9.1  Program Text

Program Text (f01fdce.c)

### 9.2  Program Data

Program Data (f01fdce.d)

### 9.3  Program Results

Program Results (f01fdce.r)