/* nag_zsyr2k (f16zwc) Example Program. * * Copyright 2005 Numerical Algorithms Group. * * Mark 8, 2005. */ #include #include #include #include #include int main(void) { /* Scalars */ Complex alpha, beta; Integer adim1, adim2, exit_status, i, j, k, n, pda, pdb, pdc; /* Arrays */ Complex *a = 0, *b = 0, *c = 0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_UploType uplo; Nag_TransType trans; Nag_MatrixType matrix; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J-1)*pda + I - 1] #define B(I, J) b[(J-1)*pdb + I - 1] #define C(I, J) c[(J-1)*pdc + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I-1)*pda + J - 1] #define B(I, J) b[(I-1)*pdb + J - 1] #define C(I, J) c[(I-1)*pdc + J - 1] order = Nag_RowMajor; #endif exit_status = 0; INIT_FAIL(fail); printf("nag_zsyr2k (f16zwc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n] "); /* Read the problem dimensions */ scanf("%ld%ld%*[^\n] ", &n, &k); /* Read the uplo parameter */ scanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg); /* Read the transpose parameter */ scanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac), see above. */ trans = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg); /* Read scalar parameters */ scanf(" ( %lf , %lf )%*[^\n] ", &alpha.re, &alpha.im); scanf(" ( %lf , %lf )%*[^\n] ", &beta.re, &beta.im); if (trans == Nag_NoTrans) { adim1 = n; adim2 = k; } else { adim1 = k; adim2 = n; } #ifdef NAG_COLUMN_MAJOR pda = adim1; #else pda = adim2; #endif pdb = pda; pdc = n; if (k > 0 && n > 0) { /* Allocate memory */ if (!(a = NAG_ALLOC(k*n, Complex)) || !(b = NAG_ALLOC(k*n, Complex)) || !(c = NAG_ALLOC(n*n, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } } else { printf("Invalid k or n\n"); exit_status = 1; return exit_status; } /* Input matrix A. */ for (i = 1; i <= adim1; ++i) { for (j = 1; j <= adim2; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); scanf("%*[^\n] "); } /* Input matrix A. */ for (i = 1; i <= adim1; ++i) { for (j = 1; j <= adim2; ++j) scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im); scanf("%*[^\n] "); } /* Input matrix C. */ if (uplo == Nag_Upper) { for (i = 1; i <= n; ++i) { for (j = i; j <= n; ++j) scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im); } scanf("%*[^\n] "); } else { for (i = 1; i <= n; ++i) { for (j = 1; j <= i; ++j) scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im); } scanf("%*[^\n] "); } /* nag_zsyr2k(f16zwc). * Rank 2k update of complex symmetric matrix. * */ nag_zsyr2k(order, uplo, trans, n, k, alpha, a, pda, b, pdb, beta, c, pdc, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zsyr2k.\n%s\n", fail.message); exit_status = 1; goto END; } if (uplo == Nag_Upper) { matrix = Nag_UpperMatrix; } else { matrix = Nag_LowerMatrix; } /* Print updated matrix C */ /* nag_gen_complx_mat_print_comp (x04dbc). * Print complex general matrix (comprehensive) */ fflush(stdout); nag_gen_complx_mat_print_comp(order, matrix, Nag_NonUnitDiag, n, n, c, pdc, Nag_BracketForm, "%6.2f", "Updated Matrix C", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s" "\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (c) NAG_FREE(c); return exit_status; }