/* nag_sparse_nherm_jacobi (f11dxc) Example Program. * * Copyright 2011, Numerical Algorithms Group. * * Mark 23, 2011. */ #include #include #include #include int main(void) { /* Scalars */ Integer exit_status = 0; double anorm, sigmax, stplhs, stprhs, tol; Integer i, irevcm, iterm, itn, lwork, lwreq, m, maxitn, monit, n, niter, nnz; /* Arrays */ char nag_enum_arg[100]; Complex *a = 0, *b = 0, *diag = 0, *work = 0, *x = 0; double *wgt = 0; Integer *icol = 0, *irow = 0; /* NAG types */ Nag_InitializeA init; Nag_SparseNsym_Method method; Nag_SparseNsym_PrecType precon; Nag_NormType norm; Nag_SparseNsym_Weight weight; NagError fail, fail1; INIT_FAIL(fail); INIT_FAIL(fail1); printf("nag_sparse_nherm_jacobi (f11dxc) Example Program Results\n"); /* Skip heading in data file*/ scanf("%*[^\n]"); scanf("%ld%*[^\n]", &n); scanf("%ld%*[^\n]", &nnz); lwork = 300; if ( !(a = NAG_ALLOC(nnz, Complex)) || !(b = NAG_ALLOC(n, Complex)) || !(diag = NAG_ALLOC(n, Complex)) || !(work = NAG_ALLOC(lwork, Complex)) || !(x = NAG_ALLOC(n, Complex)) || !(wgt = NAG_ALLOC(n, double)) || !(icol = NAG_ALLOC(nnz, Integer)) || !(irow = NAG_ALLOC(nnz, Integer)) ) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Read or initialize the parameters for the iterative solver*/ scanf("%s%*[^\n]", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ method = (Nag_SparseNsym_Method) nag_enum_name_to_value(nag_enum_arg); scanf("%s%*[^\n]", nag_enum_arg); precon = (Nag_SparseNsym_PrecType) nag_enum_name_to_value(nag_enum_arg); scanf("%s%*[^\n]", nag_enum_arg); norm = (Nag_NormType) nag_enum_name_to_value(nag_enum_arg); scanf("%s%*[^\n]", nag_enum_arg); weight = (Nag_SparseNsym_Weight) nag_enum_name_to_value(nag_enum_arg); scanf("%ld%*[^\n]", &iterm); scanf("%ld%lf%ld%*[^\n]", &m, &tol, &maxitn); scanf("%ld%*[^\n]", &monit); /* Read the parameters for the preconditioner*/ scanf("%ld%*[^\n]", &niter); anorm = 0.0; sigmax = 0.0; /* Read the non-zero elements of the matrix A*/ for (i = 0; i < nnz; i++) scanf(" ( %lf , %lf ) %ld%ld%*[^\n]", &a[i].re, &a[i].im, &irow[i], &icol[i]); /* Read right-hand side vector b and initial approximate solution*/ for (i = 0; i < n; i++) scanf(" ( %lf , %lf )", &b[i].re, &b[i].im); scanf("%*[^\n]"); for (i = 0; i < n; i++) scanf(" ( %lf , %lf )", &x[i].re, &x[i].im); scanf("%*[^\n]"); /* Call to initialize the solver */ /* nag_sparse_nherm_basic_setup (f11brc). * Complex sparse non-Hermitian linear systems, setup */ nag_sparse_nherm_basic_setup(method, precon, norm, weight, iterm, n, m, tol, maxitn, anorm, sigmax, monit, &lwreq, work, lwork, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_sparse_nherm_basic_setup (f11brc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Call solver repeatedly to solve the equations. * Note: the arrays b and x are overwritten; on final exit, x will * contain the solution and b the residual vector. */ irevcm = 0; init =Nag_InitializeI; while (irevcm != 4) { /* nag_sparse_nherm_basic_solver (f11bsc) * Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, * Bi-CGSTAB or TFQMR method */ nag_sparse_nherm_basic_solver(&irevcm, x, b, wgt, work, lwreq, &fail); switch (irevcm) { case -1: /* nag_sparse_nherm_matvec (f11xnc) * Complex sparse non-Hermitian matrix vector multiply */ nag_sparse_nherm_matvec(Nag_ConjTrans, n, nnz, a, irow, icol, Nag_SparseNsym_NoCheck, x, b, &fail1); break; case 1: nag_sparse_nherm_matvec(Nag_NoTrans, n, nnz, a, irow, icol, Nag_SparseNsym_NoCheck, x, b, &fail1); break; case 2: /* nag_sparse_nherm_jacobi(f11dxc). * Complex sparse nonsymmetric linear systems, line Jacobi preconditioner */ nag_sparse_nherm_jacobi(Nag_SparseNsym_StoreCS, Nag_NoTrans, init, niter, n, nnz, a, irow, icol, Nag_SparseNsym_Check, x, b, diag, &fail1); init = Nag_InputA; break; case 3: /* nag_sparse_nherm_basic_diagnostic (f11btc) * Complex sparse nonhermitian linear systems, diagnostic */ nag_sparse_nherm_basic_diagnostic(&itn, &stplhs, &stprhs, &anorm, &sigmax, work, lwreq,&fail1); if (fail1.code == NE_NOERROR) printf("Monitoring at iteration no.%4ld residual %14.4e\n", itn, stplhs); } if (fail1.code != NE_NOERROR) irevcm = 6; } if (fail.code != NE_NOERROR) { printf("Error from nag_sparse_nherm_basic_solver (f11bsc)\n%s\n", fail.message); exit_status = 2; goto END; } /* Obtain information about the computation using * nag_sparse_nherm_basic_diagnostic (f11btc). * Complex sparse Hermitian linear systems, diagnostic. */ nag_sparse_nherm_basic_diagnostic(&itn, &stplhs, &stprhs, &anorm, &sigmax, work, lwreq, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_sparse_nherm_basic_diagnostic (f11btc)\n%s\n", fail.message); exit_status = 3; goto END; } /* Print the output data*/ printf("\nFinal Results\n"); printf("Number of iterations for convergence: %4ld \n", itn); printf("Residual norm: %14.4e \n", stplhs); printf("Right-hand side of termination criterion: %14.4e\n", stprhs); printf("1-norm of matrix A: %14.4e\n", anorm); /* Output x*/ printf("\n%20s%29s\n","Solution vector","Residual vector"); for (i = 0; i < n; i++) printf("(%11.4e, %11.4e) (%11.4e, %11.4e)\n", x[i].re, x[i].im, b[i].re, b[i].im); END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (diag) NAG_FREE(diag); if (work) NAG_FREE(work); if (x) NAG_FREE(x); if (wgt) NAG_FREE(wgt); if (icol) NAG_FREE(icol); if (irow) NAG_FREE(irow); return exit_status; }