/* nag_dsymm (f16ycc) Example Program. * * Copyright 2005 Numerical Algorithms Group. * * Mark 8, 2005. */ #include #include #include #include #include int main(void) { /* Scalars */ double alpha, beta; Integer exit_status, i, j, m, n, pda, pdb, pdc; /* Arrays */ double *a=0, *b=0, *c=0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_SideType side; Nag_UploType uplo; #ifdef NAG_COLUMN_MAJOR #define A(I,J) a[(J-1)*pda + I - 1] #define B(I,J) b[(J-1)*pdb + I - 1] #define C(I,J) c[(J-1)*pdc + I - 1] order = Nag_ColMajor; #else #define A(I,J) a[(I-1)*pda + J - 1] #define B(I,J) b[(I-1)*pdb + J - 1] #define C(I,J) c[(I-1)*pdc + J - 1] order = Nag_RowMajor; #endif exit_status = 0; INIT_FAIL(fail); Vprintf( "nag_dsymm (f16ycc) Example Program Results\n\n"); /* Skip heading in data file */ Vscanf("%*[^\n] "); /* Read the problem dimensions */ Vscanf("%ld%ld%*[^\n] ", &m, &n); /* Read the side parameter */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ side = nag_enum_name_to_value(nag_enum_arg); /* Read uplo */ Vscanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ uplo = nag_enum_name_to_value(nag_enum_arg); /* Read scalar parameters */ Vscanf("%lf%lf%*[^\n] ", &alpha, &beta); if (side == Nag_LeftSide) pda = m; else pda = n; #ifdef NAG_COLUMN_MAJOR pdb = m; pdc = m; #else pdb = n; pdc = n; #endif if (m > 0 && n > 0) { /* Allocate memory */ if (side == Nag_LeftSide) { if ( !(a = NAG_ALLOC(m*m, double)) ) { Vprintf("Allocation failure\n"); exit_status = -1; goto END; } } else { if ( !(a = NAG_ALLOC(n*n, double)) ) { Vprintf("Allocation failure\n"); exit_status = -1; goto END; } } if ( !(b = NAG_ALLOC(m*n, double))|| !(c = NAG_ALLOC(m*n, double))) { Vprintf("Allocation failure\n"); exit_status = -1; goto END; } } else { Vprintf("Invalid m or n\n"); exit_status = 1; return exit_status; } /* Input matrix A */ if (uplo == Nag_Upper) { for (i = 1; i <= pda; ++i) { for (j = i; j <= pda; ++j) Vscanf("%lf", &A(i,j)); Vscanf("%*[^\n] "); } } else { for (i = 1; i <= pda; ++i) { for (j = 1; j <= i; ++j) Vscanf("%lf", &A(i,j)); Vscanf("%*[^\n] "); } } /* Input matrix B */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) Vscanf("%lf", &B(i,j)); Vscanf("%*[^\n] "); } /* Input matrix C */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) Vscanf("%lf", &C(i,j)); Vscanf("%*[^\n] "); } /* nag_dsymm(f16ycc). * Symmetric matrix-matrix multiply. * */ nag_dsymm(order, side, uplo, m, n, alpha, a, pda, b, pdb, beta, c, pdc, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from nag_dsymm.\n%s\n", fail.message); exit_status = 1; goto END; } /* Print result */ /* nag_gen_real_mat_print (x04cac). * Print real general matrix (easy-to-use) */ nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n, c, pdc, "Matrix Matrix Product", 0, &fail); if (fail.code != NE_NOERROR) { Vprintf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (c) NAG_FREE(c); return exit_status; }