G02 – Correlation and Regression Analysis
- G02 Introduction
- g02aa – Computes the nearest correlation matrix to a real square matrix, using the method of Qi and Sun
- nag_correg_corrmat_nearest – g02aa
- g02ab – Computes the nearest correlation matrix to a real square matrix, augmented g02aa to incorporate weights and bounds
- nag_correg_corrmat_nearest_bounded – g02ab
- g02ae – Computes the nearest correlation matrix with k-factor structure to a real square matrix
- nag_correg_corrmat_nearest_kfactor – g02ae
- g02ba – Pearson product-moment correlation coefficients, all variables, no missing values
- nag_correg_coeffs_pearson – g02ba
- g02bb – Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
- nag_correg_coeffs_pearson_miss_case – g02bb
- g02bc – Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
- nag_correg_coeffs_pearson_miss_pair – g02bc
- g02bd – Correlation-like coefficients (about zero), all variables, no missing values
- nag_correg_coeffs_zero – g02bd
- g02be – Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
- nag_correg_coeffs_zero_miss_case – g02be
- g02bf – Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
- nag_correg_coeffs_zero_miss_pair – g02bf
- g02bg – Pearson product-moment correlation coefficients, subset of variables, no missing values
- nag_correg_coeffs_pearson_subset – g02bg
- g02bh – Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
- nag_correg_coeffs_pearson_subset_miss_case – g02bh
- g02bj – Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values
- nag_correg_coeffs_pearson_subset_miss_pair – g02bj
- g02bk – Correlation-like coefficients (about zero), subset of variables, no missing values
- nag_correg_coeffs_zero_subset – g02bk
- g02bl – Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
- nag_correg_coeffs_zero_subset_miss_case – g02bl
- g02bm – Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
- nag_correg_coeffs_zero_subset_miss_pair – g02bm
- g02bn – Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
- nag_correg_coeffs_kspearman_overwrite – g02bn
- g02bp – Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
- nag_correg_coeffs_kspearman_miss_case_overwrite – g02bp
- g02bq – Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
- nag_correg_coeffs_kspearman – g02bq
- g02br – Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
- nag_correg_coeffs_kspearman_miss_case – g02br
- g02bs – Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
- nag_correg_coeffs_kspearman_miss_pair – g02bs
- g02bt – Update a weighted sum of squares matrix with a new observation
- nag_correg_ssqmat_update – g02bt
- g02bu – Computes a weighted sum of squares matrix
- nag_correg_ssqmat – g02bu
- g02bw – Computes a correlation matrix from a sum of squares matrix
- nag_correg_ssqmat_to_corrmat – g02bw
- g02bx – Computes (optionally weighted) correlation and covariance matrices
- nag_correg_corrmat – g02bx
- g02by – Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by g02bx
- nag_correg_corrmat_partial – g02by
- g02ca – Simple linear regression with constant term, no missing values
- nag_correg_linregs_const – g02ca
- g02cb – Simple linear regression without constant term, no missing values
- nag_correg_linregs_noconst – g02cb
- g02cc – Simple linear regression with constant term, missing values
- nag_correg_linregs_const_miss – g02cc
- g02cd – Simple linear regression without constant term, missing values
- nag_correg_linregs_noconst_miss – g02cd
- g02ce – Service function for multiple linear regression, select elements from vectors and matrices
- nag_correg_linregm_service_select – g02ce
- g02cf – Service function for multiple linear regression, re-order elements of vectors and matrices
- nag_correg_linregm_service_reorder – g02cf
- g02cg – Multiple linear regression, from correlation coefficients, with constant term
- nag_correg_linregm_coeffs_const – g02cg
- g02ch – Multiple linear regression, from correlation-like coefficients, without constant term
- nag_correg_linregm_coeffs_noconst – g02ch
- g02da – Fits a general (multiple) linear regression model
- nag_correg_linregm_fit – g02da
- g02dc – Add/delete an observation to/from a general linear regression model
- nag_correg_linregm_obs_edit – g02dc
- g02dd – Estimates of linear parameters and general linear regression model from updated model
- nag_correg_linregm_update – g02dd
- g02de – Add a new independent variable to a general linear regression model
- nag_correg_linregm_var_add – g02de
- g02df – Delete an independent variable from a general linear regression model
- nag_correg_linregm_var_del – g02df
- g02dg – Fits a general linear regression model to new dependent variable
- nag_correg_linregm_fit_newvar – g02dg
- g02dk – Estimates and standard errors of parameters of a general linear regression model for given constraints
- nag_correg_linregm_constrain – g02dk
- g02dn – Computes estimable function of a general linear regression model and its standard error
- nag_correg_linregm_estfunc – g02dn
- g02ea – Computes residual sums of squares for all possible linear regressions for a set of independent variables
- nag_correg_linregm_rssq – g02ea
- g02ec – Calculates R^2 and C_P values from residual sums of squares
- nag_correg_linregm_rssq_stat – g02ec
- g02ee – Fits a linear regression model by forward selection
- nag_correg_linregm_fit_onestep – g02ee
- g02ef – Stepwise linear regression
- nag_correg_linregm_fit_stepwise – g02ef
- g02fa – Calculates standardized residuals and influence statistics
- nag_correg_linregm_stat_resinf – g02fa
- g02fc – Computes Durbin–Watson test statistic
- nag_correg_linregm_stat_durbwat – g02fc
- g02ga – Fits a generalized linear model with Normal errors
- nag_correg_glm_normal – g02ga
- g02gb – Fits a generalized linear model with binomial errors
- nag_correg_glm_binomial – g02gb
- g02gc – Fits a generalized linear model with Poisson errors
- nag_correg_glm_poisson – g02gc
- g02gd – Fits a generalized linear model with gamma errors
- nag_correg_glm_gamma – g02gd
- g02gk – Estimates and standard errors of parameters of a general linear model for given constraints
- nag_correg_glm_constrain – g02gk
- g02gn – Computes estimable function of a generalized linear model and its standard error
- nag_correg_glm_estfunc – g02gn
- g02gp – Computes a predicted value and its associated standard error based on a previously fitted generalized linear model
- nag_correg_glm_predict – g02gp
- g02ha – Robust regression, standard M-estimates
- nag_correg_robustm – g02ha
- g02hb – Robust regression, compute weights for use with g02hd
- nag_correg_robustm_wts – g02hb
- g02hd – Robust regression, compute regression with user-supplied functions and weights
- nag_correg_robustm_user – g02hd
- g02hf – Robust regression, variance-covariance matrix following g02hd
- nag_correg_robustm_user_varmat – g02hf
- g02hk – Calculates a robust estimation of a correlation matrix, Huber's weight function
- nag_correg_robustm_corr_huber – g02hk
- g02hl – Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives
- nag_correg_robustm_corr_user_deriv – g02hl
- g02hm – Calculates a robust estimation of a correlation matrix, user-supplied weight function
- nag_correg_robustm_corr_user – g02hm
- g02ja – Linear mixed effects regression using Restricted Maximum Likelihood (REML)
- nag_correg_mixeff_reml – g02ja
- g02jb – Linear mixed effects regression using Maximum Likelihood (ML)
- nag_correg_mixeff_ml – g02jb
- g02jc – Hierarchical mixed effects regression, initialization function for g02jd, g02je
- nag_correg_mixeff_hier_init – g02jc
- g02jd – Hierarchical mixed effects regression using Restricted Maximum Likelihood (REML)
- nag_correg_mixeff_hier_reml – g02jd
- g02je – Hierarchical mixed effects regression using Maximum Likelihood (ML)
- nag_correg_mixeff_hier_ml – g02je
- g02ka – Ridge regression, optimizing a ridge regression parameter
- nag_correg_ridge_opt – g02ka
- g02kb – Ridge regression using a number of supplied ridge regression parameters
- nag_correg_ridge – g02kb
- g02la – Partial least squares (PLS) regression using singular value decomposition
- nag_correg_pls_svd – g02la
- g02lb – Partial least squares (PLS) regression using Wold's iterative method
- nag_correg_pls_wold – g02lb
- g02lc – PLS parameter estimates following partial least squares regression by g02la, g02lb
- nag_correg_pls_fit – g02lc
- g02ld – PLS predictions based on parameter estimates from g02lc
- nag_correg_pls_pred – g02ld
- g02qf – Quantile linear regression, simple interface, independent, identically distributed (IID) errors
- nag_correg_quantile_linreg_easy – g02qf
- g02qg – Quantile linear regression, comprehensive interface
- nag_correg_quantile_linreg – g02qg
- g02zk – Option setting function for g02qg
- nag_correg_optset – g02zk
- g02zl – Option getting function for g02qg
- nag_correg_optget – g02zl