hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_bessel_k0_real_vector (s18aq)

Purpose

nag_specfun_bessel_k0_real_vector (s18aq) returns an array of values of the modified Bessel function K0(x)K0(x).

Syntax

[f, ivalid, ifail] = s18aq(x, 'n', n)
[f, ivalid, ifail] = nag_specfun_bessel_k0_real_vector(x, 'n', n)

Description

nag_specfun_bessel_k0_real_vector (s18aq) evaluates an approximation to the modified Bessel function of the second kind K0(xi)K0(xi) for an array of arguments xixi, for i = 1,2,,ni=1,2,,n.
Note:  K0(x)K0(x) is undefined for x0x0 and the function will fail for such arguments.
The function is based on five Chebyshev expansions:
For 0 < x10<x1,
K0(x) = lnx arTr(t) +  brTr(t),   where ​t = 2x21.
r = 0 r = 0
K0(x)=-lnxr=0arTr(t)+r=0brTr(t),   where ​t=2x2-1.
For 1 < x21<x2,
K0(x) = ex crTr(t),   where ​t = 2x3.
r = 0
K0(x)=e-xr=0crTr(t),   where ​t=2x-3.
For 2 < x42<x4,
K0(x) = ex drTr(t),   where ​t = x3.
r = 0
K0(x)=e-xr=0drTr(t),   where ​t=x-3.
For x > 4x>4,
K0(x) = (ex)/(sqrt(x)) erTr(t),where ​t = (9x)/(1 + x).
r = 0
K0(x)=e-xx r=0erTr(t),where ​ t=9-x 1+x .
For xx near zero, K0(x)γln(x/2) K0(x)-γ-ln( x2) , where γγ denotes Euler's constant. This approximation is used when xx is sufficiently small for the result to be correct to machine precision.
For large xx, where there is a danger of underflow due to the smallness of K0K0, the result is set exactly to zero.

References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Parameters

Compulsory Input Parameters

1:     x(n) – double array
n, the dimension of the array, must satisfy the constraint n0n0.
The argument xixi of the function, for i = 1,2,,ni=1,2,,n.
Constraint: x(i) > 0.0xi>0.0, for i = 1,2,,ni=1,2,,n.

Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The dimension of the array x.
nn, the number of points.
Constraint: n0n0.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

1:     f(n) – double array
K0(xi)K0(xi), the function values.
2:     ivalid(n) – int64int32nag_int array
ivalid(i)ivalidi contains the error code for xixi, for i = 1,2,,ni=1,2,,n.
ivalid(i) = 0ivalidi=0
No error.
ivalid(i) = 1ivalidi=1
xi0.0xi0.0, K0(xi)K0(xi) is undefined. f(i)fi contains 0.00.0.
3:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

W ifail = 1ifail=1
On entry, at least one value of x was invalid.
Check ivalid for more information.
  ifail = 2ifail=2
Constraint: n0n0.

Accuracy

Let δδ and εε be the relative errors in the argument and result respectively.
If δδ is somewhat larger than the machine precision (i.e., if δδ is due to data errors etc.), then εε and δδ are approximately related by:
ε |( x K1 (x) )/( K0 (x) )|δ.
ε | x K1 (x) K0 (x) |δ.
Figure 1 shows the behaviour of the error amplification factor
|( x K1(x) )/( K0 (x) )|.
| x K1(x) K0 (x) |.
However, if δδ is of the same order as machine precision, then rounding errors could make εε slightly larger than the above relation predicts.
For small xx, the amplification factor is approximately |1/(lnx)|| 1lnx |, which implies strong attenuation of the error, but in general εε can never be less than the machine precision.
For large xx, εxδεxδ and we have strong amplification of the relative error. Eventually K0K0, which is asymptotically given by (ex)/(sqrt(x)) e-xx , becomes so small that it cannot be calculated without underflow and hence the function will return zero. Note that for large xx the errors will be dominated by those of the standard function exp.
Figure 1
Figure 1

Further Comments

None.

Example

function nag_specfun_bessel_k0_real_vector_example
x = [0.4; 0.6; 1.4; 1.6; 2.5; 3.5; 6; 8; 10; 1000];
[f, ivalid, ifail] = nag_specfun_bessel_k0_real_vector(x);
fprintf('\n    X           Y\n');
for i=1:numel(x)
  fprintf('%12.3e%12.3e%5d\n', x(i), f(i), ivalid(i));
end
 

    X           Y
   4.000e-01   1.115e+00    0
   6.000e-01   7.775e-01    0
   1.400e+00   2.437e-01    0
   1.600e+00   1.880e-01    0
   2.500e+00   6.235e-02    0
   3.500e+00   1.960e-02    0
   6.000e+00   1.244e-03    0
   8.000e+00   1.465e-04    0
   1.000e+01   1.778e-05    0
   1.000e+03   0.000e+00    0

function s18aq_example
x = [0.4; 0.6; 1.4; 1.6; 2.5; 3.5; 6; 8; 10; 1000];
[f, ivalid, ifail] = s18aq(x);
fprintf('\n    X           Y\n');
for i=1:numel(x)
  fprintf('%12.3e%12.3e%5d\n', x(i), f(i), ivalid(i));
end
 

    X           Y
   4.000e-01   1.115e+00    0
   6.000e-01   7.775e-01    0
   1.400e+00   2.437e-01    0
   1.600e+00   1.880e-01    0
   2.500e+00   6.235e-02    0
   3.500e+00   1.960e-02    0
   6.000e+00   1.244e-03    0
   8.000e+00   1.465e-04    0
   1.000e+01   1.778e-05    0
   1.000e+03   0.000e+00    0


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013