hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_rand_dist_uniform01 (g05sa)

Purpose

nag_rand_dist_uniform01 (g05sa) generates a vector of pseudorandom numbers taken from a uniform distribution between 00 and 11.

Syntax

[state, x, ifail] = g05sa(n, state)
[state, x, ifail] = nag_rand_dist_uniform01(n, state)

Description

nag_rand_dist_uniform01 (g05sa) generates nn values from a uniform distribution over the half closed interval (0,1](0,1].
One of the initialization functions nag_rand_init_repeat (g05kf) (for a repeatable sequence if computed sequentially) or nag_rand_init_nonrepeat (g05kg) (for a non-repeatable sequence) must be called prior to the first call to nag_rand_dist_uniform01 (g05sa).

References

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

Parameters

Compulsory Input Parameters

1:     n – int64int32nag_int scalar
nn, the number of pseudorandom numbers to be generated.
Constraint: n0n0.
2:     state( : :) – int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains information on the selected base generator and its current state.

Optional Input Parameters

None.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

1:     state( : :) – int64int32nag_int array
Note: the actual argument supplied must be the array state supplied to the initialization routines nag_rand_init_repeat (g05kf) or nag_rand_init_nonrepeat (g05kg).
Contains updated information on the state of the generator.
2:     x(n) – double array
The nn pseudorandom numbers from a uniform distribution over the half closed interval (0,1](0,1].
3:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:
  ifail = 1ifail=1
On entry, n < 0n<0.
  ifail = 2ifail=2
On entry,state vector was not initialized or has been corrupted.

Accuracy

Not applicable.

Further Comments

None.

Example

function nag_rand_dist_uniform01_example
% Initialize the seed
seed = [int64(1762543)];
% genid and subid identify the base generator
genid = int64(1);
subid =  int64(1);
% The number of pseudorandom numbers to be generated
n = int64(5);
% Initialize the generator to a repeatable sequence
[state, ifail] = nag_rand_init_repeat(genid, subid, seed);
[state, x, ifail] = nag_rand_dist_uniform01(n, state)
 

state =

                   17
                 1234
                    1
                    0
                 4110
                11820
                23399
                29340
                17917
                13895
                19930
                    8
                    0
                 1234
                    1
                    1
                 1234


x =

    0.6364
    0.1065
    0.7460
    0.7983
    0.1046


ifail =

                    0


function g05sa_example
% Initialize the seed
seed = [int64(1762543)];
% genid and subid identify the base generator
genid = int64(1);
subid =  int64(1);
% The number of pseudorandom numbers to be generated
n = int64(5);
% Initialize the generator to a repeatable sequence
[state, ifail] = g05kf(genid, subid, seed);
[state, x, ifail] = g05sa(n, state)
 

state =

                   17
                 1234
                    1
                    0
                 4110
                11820
                23399
                29340
                17917
                13895
                19930
                    8
                    0
                 1234
                    1
                    1
                 1234


x =

    0.6364
    0.1065
    0.7460
    0.7983
    0.1046


ifail =

                    0



PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013