hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_correg_corrmat_nearest (g02aa)

Purpose

nag_correg_corrmat_nearest (g02aa) computes the nearest correlation matrix, in the Frobenius norm, to a given square, input matrix.

Syntax

[g, x, iter, feval, nrmgrd, ifail] = g02aa(g, 'n', n, 'errtol', errtol, 'maxits', maxits, 'maxit', maxit)
[g, x, iter, feval, nrmgrd, ifail] = nag_correg_corrmat_nearest(g, 'n', n, 'errtol', errtol, 'maxits', maxits, 'maxit', maxit)
Note: the interface to this routine has changed since earlier releases of the toolbox:
Mark 23: errtol, maxits, maxit now optional
.

Description

A correlation matrix may be characterised as a real square matrix that is symmetric, has a unit diagonal and is positive semidefinite.
nag_correg_corrmat_nearest (g02aa) applies an inexact Newton method to a dual formulation of the problem, as described by Qi and Sun (2006). It applies the improvements suggested by Borsdorf and Higham (2010).

References

Borsdorf R and Higham N J (2010) A preconditioned (Newton) algorithm for the nearest correlation matrix IMA Journal of Numerical Analysis 30(1) 94–107
Qi H and Sun D (2006) A quadratically convergent Newton method for computing the nearest correlation matrix SIAM J. Matrix AnalAppl 29(2) 360–385

Parameters

Compulsory Input Parameters

1:     g(ldg,n) – double array
ldg, the first dimension of the array, must satisfy the constraint ldgnldgn.
GG, the initial matrix.

Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the array g and the second dimension of the array g. (An error is raised if these dimensions are not equal.)
The size of the matrix GG.
Constraint: n > 0n>0.
2:     errtol – double scalar
The termination tolerance for the Newton iteration. If errtol0.0errtol0.0 then n × sqrt(machine precision)n×machine precision is used.
Default: 0.00.0 
3:     maxits – int64int32nag_int scalar
maxits specifies the maximum number of iterations used for the iterative scheme used to solve the linear algebraic equations at each Newton step.
If maxits0maxits0, 2 × n2×n is used.
Default: 00 
4:     maxit – int64int32nag_int scalar
Specifies the maximum number of Newton iterations.
If maxit0maxit0, 200200 is used.
Default: 00 

Input Parameters Omitted from the MATLAB Interface

ldg ldx

Output Parameters

1:     g(ldg,n) – double array
ldgnldgn.
A symmetric matrix (1/2)(G + GT)12(G+GT) with the diagonal set to II.
2:     x(ldx,n) – double array
ldxnldxn.
Contains the nearest correlation matrix.
3:     iter – int64int32nag_int scalar
The number of Newton steps taken.
4:     feval – int64int32nag_int scalar
The number of function evaluations of the dual problem.
5:     nrmgrd – double scalar
The norm of the gradient of the last Newton step.
6:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

  ifail = 1ifail=1
On entry,n0n0,
orldg < nldg<n,
orldx < nldx<n.
  ifail = 2ifail=2
The function fails to converge in maxit iterations. Increase maxit or check the call to the function.
W ifail = 3ifail=3
Machine precision is limiting convergence. In this instance the returned value of x may be useful.
  ifail = 4ifail=4
An internal eigenproblem could not be solved. This should not occur. Please contact NAG with details of your call.
  ifail = 999ifail=-999
Internal memory allocation failed.

Accuracy

The returned accuracy is controlled by errtol and limited by machine precision.

Further Comments

Arrays are internally allocated by nag_correg_corrmat_nearest (g02aa). The total size of these arrays is 11 × n + 3 × n × n + max (2 × n × n + 6 × n + 1,120 + 9 × n)11×n+3×n×n+max(2×n×n+6×n+1,120+9×n) real elements and 5 × n + 35×n+3 integer elements.

Example

function nag_correg_corrmat_nearest_example
g = [2, -1, 0, 0;
     -1, 2, -1, 0;
     0, -1, 2, -1;
     0, 0, -1, 2];
[gOut, x, iter, feval, nrmgrd, ifail] = nag_correg_corrmat_nearest(g);
if (ifail == 0)
  fprintf('\n     Nearest Correlation Matrix\n');
  disp(x);
  fprintf('\n Number of Newton steps taken:   %d\n', iter);
  fprintf(' Number of function evaluations: %d\n', feval);
  if (nrmgrd > 4*nag_machine_precision)
    fprintf(' Norm of gradient of last Newton step: %6.4f\n', nrmgrd);
  end
end
 

     Nearest Correlation Matrix
    1.0000   -0.8084    0.1916    0.1068
   -0.8084    1.0000   -0.6562    0.1916
    0.1916   -0.6562    1.0000   -0.8084
    0.1068    0.1916   -0.8084    1.0000


 Number of Newton steps taken:   3
 Number of function evaluations: 4
 Norm of gradient of last Newton step: 0.0000

function g02aa_example
g = [2, -1, 0, 0;
     -1, 2, -1, 0;
     0, -1, 2, -1;
     0, 0, -1, 2];
[gOut, x, iter, feval, nrmgrd, ifail] = g02aa(g);
if (ifail == 0)
  fprintf('\n     Nearest Correlation Matrix\n');
  disp(x);
  fprintf('\n Number of Newton steps taken:   %d\n', iter);
  fprintf(' Number of function evaluations: %d\n', feval);
  if (nrmgrd > 4*x02aj)
    fprintf(' Norm of gradient of last Newton step: %6.4f\n', nrmgrd);
  end
end
 

     Nearest Correlation Matrix
    1.0000   -0.8084    0.1916    0.1068
   -0.8084    1.0000   -0.6562    0.1916
    0.1916   -0.6562    1.0000   -0.8084
    0.1068    0.1916   -0.8084    1.0000


 Number of Newton steps taken:   3
 Number of function evaluations: 4
 Norm of gradient of last Newton step: 0.0000


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013