Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_zpftri (f07ww)

## Purpose

nag_lapack_zpftri (f07ww) computes the inverse of a complex Hermitian positive definite matrix using the Cholesky factorization computed by nag_lapack_zpftrf (f07wr) and stored in Rectangular Full Packed (RFP) format. The RFP storage format is described in Section [Rectangular Full Packed (RFP) Storage] in the F07 Chapter Introduction.

## Syntax

[a, info] = f07ww(transr, uplo, n, a)
[a, info] = nag_lapack_zpftri(transr, uplo, n, a)

## Description

nag_lapack_zpftri (f07ww) is used to compute the inverse of a complex Hermitian positive definite matrix A$A$, the function must be preceded by a call to nag_lapack_zpftrf (f07wr), which computes the Cholesky factorization of A$A$.
If uplo = 'U'${\mathbf{uplo}}=\text{'U'}$, A = UHU$A={U}^{\mathrm{H}}U$ and A1${A}^{-1}$ is computed by first inverting U$U$ and then forming (U1)UH$\left({U}^{-1}\right){U}^{-\mathrm{H}}$.
If uplo = 'L'${\mathbf{uplo}}=\text{'L'}$, A = LLH$A=L{L}^{\mathrm{H}}$ and A1${A}^{-1}$ is computed by first inverting L$L$ and then forming LH(L1)${L}^{-\mathrm{H}}\left({L}^{-1}\right)$.

## References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

## Parameters

### Compulsory Input Parameters

1:     transr – string (length ≥ 1)
Specifies whether the normal RFP representation of A$A$ or its conjugate transpose is stored.
transr = 'N'${\mathbf{transr}}=\text{'N'}$
The matrix A$A$ is stored in normal RFP format.
transr = 'C'${\mathbf{transr}}=\text{'C'}$
The conjugate transpose of the RFP representation of the matrix A$A$ is stored.
Constraint: transr = 'N'${\mathbf{transr}}=\text{'N'}$ or 'C'$\text{'C'}$.
2:     uplo – string (length ≥ 1)
Specifies how A$A$ has been factorized.
uplo = 'U'${\mathbf{uplo}}=\text{'U'}$
A = UHU$A={U}^{\mathrm{H}}U$, where U$U$ is upper triangular.
uplo = 'L'${\mathbf{uplo}}=\text{'L'}$
A = LLH$A=L{L}^{\mathrm{H}}$, where L$L$ is lower triangular.
Constraint: uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or 'L'$\text{'L'}$.
3:     n – int64int32nag_int scalar
n$n$, the order of the matrix A$A$.
Constraint: n0${\mathbf{n}}\ge 0$.
4:     a(n × (n + 1) / 2${\mathbf{n}}×\left({\mathbf{n}}+1\right)/2$) – complex array
The Cholesky factorization of A$A$ stored in RFP format, as returned by nag_lapack_zpftrf (f07wr).

None.

None.

### Output Parameters

1:     a(n × (n + 1) / 2${\mathbf{n}}×\left({\mathbf{n}}+1\right)/2$) – complex array
The factorization stores the n$n$ by n$n$ matrix A1${A}^{-1}$ stored in RFP format.
2:     info – int64int32nag_int scalar
info = 0${\mathbf{info}}=0$ unless the function detects an error (see Section [Error Indicators and Warnings]).

## Error Indicators and Warnings

INFO > 0${\mathbf{INFO}}>0$
The leading minor of order _$_$ is not positive definite and the factorization could not be completed. Hence A$A$ itself is not positive definite. This may indicate an error in forming the matrix A$A$. There is no function specifically designed to factorize a Hermitian band matrix which is not positive definite; the matrix must be treated either as a nonsymmetric band matrix, by calling nag_lapack_zgbtrf (f07br) or as a full Hermitian matrix, by calling nag_lapack_zhetrf (f07mr).

## Accuracy

The computed inverse X$X$ satisfies
 ‖XA − I‖2 ≤ c(n)εκ2(A)   and   ‖AX − I‖2 ≤ c(n)εκ2(A) , $‖XA-I‖2≤c(n)εκ2(A) and ‖AX-I‖2≤c(n)εκ2(A) ,$
where c(n)$c\left(n\right)$ is a modest function of n$n$, ε$\epsilon$ is the machine precision and κ2(A)${\kappa }_{2}\left(A\right)$ is the condition number of A$A$ defined by
 κ2(A) = ‖A‖2‖A − 1‖2 . $κ2(A)=‖A‖2‖A-1‖2 .$

The total number of real floating point operations is approximately (8/3)n3$\frac{8}{3}{n}^{3}$.
The real analogue of this function is nag_lapack_dpftri (f07wj).

## Example

```function nag_lapack_zpftri_example
a = [ 4.09 + 0.00i;
3.23 + 0.00i;
1.51 + 1.92i;
1.90 - 0.84i;
0.42 - 2.50i;
2.33 - 0.14i;
4.29 + 0.00i;
3.58 + 0.00i;
-0.23 - 1.11i;
-1.18 - 1.37i];
transr = 'n';
uplo   = 'l';
n      = int64(4);
% Factorize a
[a, info] = nag_lapack_zpftrf(transr, uplo, n, a);

if info == 0
% Compute inverse of a
[a, info] = nag_lapack_zpftri(transr, uplo, n, a);
% Convert inverse to full array form, and print it
[f, info] = nag_matop_ztfttr(transr, uplo, n, a);
fprintf('\n');
[ifail] = ...
nag_file_print_matrix_complex_gen_comp(uplo, 'n', f, 'b', 'f7.4', 'Inverse', 'i', 'i', int64(80), int64(0));
else
fprintf('\na is not positive definite.\n');
end
```
```

Inverse
1                 2                 3                 4
1  ( 5.4691, 0.0000)
2  (-1.2624,-1.5491) ( 1.1024, 0.0000)
3  (-2.9746,-0.9616) ( 0.8989,-0.5672) ( 2.1589, 0.0000)
4  ( 1.1962, 2.9772) (-0.9826,-0.2566) (-1.3756,-1.4550) ( 2.2934, 0.0000)

```
```function f07ww_example
a = [ 4.09 + 0.00i;
3.23 + 0.00i;
1.51 + 1.92i;
1.90 - 0.84i;
0.42 - 2.50i;
2.33 - 0.14i;
4.29 + 0.00i;
3.58 + 0.00i;
-0.23 - 1.11i;
-1.18 - 1.37i];
transr = 'n';
uplo   = 'l';
n      = int64(4);
% Factorize a
[a, info] = f07wr(transr, uplo, n, a);

if info == 0
% Compute inverse of a
[a, info] = f07ww(transr, uplo, n, a);
% Convert inverse to full array form, and print it
[f, info] = f01vh(transr, uplo, n, a);
fprintf('\n');
[ifail] = x04db(uplo, 'n', f, 'b', 'f7.4', 'Inverse', 'i', 'i', int64(80), int64(0));
else
fprintf('\na is not positive definite.\n');
end
```
```

Inverse
1                 2                 3                 4
1  ( 5.4691, 0.0000)
2  (-1.2624,-1.5491) ( 1.1024, 0.0000)
3  (-2.9746,-0.9616) ( 0.8989,-0.5672) ( 2.1589, 0.0000)
4  ( 1.1962, 2.9772) (-0.9826,-0.2566) (-1.3756,-1.4550) ( 2.2934, 0.0000)

```

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013