hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_ztrcon (f07tu)

Purpose

nag_lapack_ztrcon (f07tu) estimates the condition number of a complex triangular matrix.

Syntax

[rcond, info] = f07tu(norm_p, uplo, diag, a, 'n', n)
[rcond, info] = nag_lapack_ztrcon(norm_p, uplo, diag, a, 'n', n)

Description

nag_lapack_ztrcon (f07tu) estimates the condition number of a complex triangular matrix AA, in either the 11-norm or the -norm:
κ1 (A) = A1 A11   or   κ (A) = A A1 .
κ1 (A) = A1 A-11   or   κ (A) = A A-1 .
Note that κ(A) = κ1(AT)κ(A)=κ1(AT).
Because the condition number is infinite if AA is singular, the function actually returns an estimate of the reciprocal of the condition number.
The function computes A1A1 or AA exactly, and uses Higham's implementation of Hager's method (see Higham (1988)) to estimate A11A-11 or A1A-1.

References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

Parameters

Compulsory Input Parameters

1:     norm_p – string (length ≥ 1)
Indicates whether κ1(A)κ1(A) or κ(A)κ(A) is estimated.
norm = '1'norm='1' or 'O''O'
κ1(A)κ1(A) is estimated.
norm = 'I'norm='I'
κ(A)κ(A) is estimated.
Constraint: norm = '1'norm='1', 'O''O' or 'I''I'.
2:     uplo – string (length ≥ 1)
Specifies whether AA is upper or lower triangular.
uplo = 'U'uplo='U'
AA is upper triangular.
uplo = 'L'uplo='L'
AA is lower triangular.
Constraint: uplo = 'U'uplo='U' or 'L''L'.
3:     diag – string (length ≥ 1)
Indicates whether AA is a nonunit or unit triangular matrix.
diag = 'N'diag='N'
AA is a nonunit triangular matrix.
diag = 'U'diag='U'
AA is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 11.
Constraint: diag = 'N'diag='N' or 'U''U'.
4:     a(lda, : :) – complex array
The first dimension of the array a must be at least max (1,n)max(1,n)
The second dimension of the array must be at least max (1,n)max(1,n)
The nn by nn triangular matrix AA.
  • If uplo = 'U'uplo='U', aa is upper triangular and the elements of the array below the diagonal are not referenced.
  • If uplo = 'L'uplo='L', aa is lower triangular and the elements of the array above the diagonal are not referenced.
  • If diag = 'U'diag='U', the diagonal elements of aa are assumed to be 11, and are not referenced.

Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the array a The second dimension of the array a.
nn, the order of the matrix AA.
Constraint: n0n0.

Input Parameters Omitted from the MATLAB Interface

lda work rwork

Output Parameters

1:     rcond – double scalar
An estimate of the reciprocal of the condition number of AA. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, AA is singular to working precision.
2:     info – int64int32nag_int scalar
info = 0info=0 unless the function detects an error (see Section [Error Indicators and Warnings]).

Error Indicators and Warnings

  info = iinfo=-i
If info = iinfo=-i, parameter ii had an illegal value on entry. The parameters are numbered as follows:
1: norm_p, 2: uplo, 3: diag, 4: n, 5: a, 6: lda, 7: rcond, 8: work, 9: rwork, 10: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

Accuracy

The computed estimate rcond is never less than the true value ρρ, and in practice is nearly always less than 10ρ10ρ, although examples can be constructed where rcond is much larger.

Further Comments

A call to nag_lapack_ztrcon (f07tu) involves solving a number of systems of linear equations of the form Ax = bAx=b or AHx = bAHx=b; the number is usually 55 and never more than 1111. Each solution involves approximately 4n24n2 real floating point operations but takes considerably longer than a call to nag_lapack_ztrtrs (f07ts) with one right-hand side, because extra care is taken to avoid overflow when AA is approximately singular.
The real analogue of this function is nag_lapack_dtrcon (f07tg).

Example

function nag_lapack_ztrcon_example
norm_p = '1';
uplo = 'L';
diag = 'N';
a = [ 4.78 + 4.56i,  0 + 0i,  0 + 0i,  0 + 0i;
      2 - 0.3i,  -4.11 + 1.25i,  0 + 0i,  0 + 0i;
      2.89 - 1.34i,  2.36 - 4.25i,  4.15 + 0.8i,  0 + 0i;
      -1.89 + 1.15i,  0.04 - 3.69i,  -0.02 + 0.46i,  0.33 - 0.26i];
[rcond, info] = nag_lapack_ztrcon(norm_p, uplo, diag, a)
 

rcond =

    0.0268


info =

                    0


function f07tu_example
norm_p = '1';
uplo = 'L';
diag = 'N';
a = [ 4.78 + 4.56i,  0 + 0i,  0 + 0i,  0 + 0i;
      2 - 0.3i,  -4.11 + 1.25i,  0 + 0i,  0 + 0i;
      2.89 - 1.34i,  2.36 - 4.25i,  4.15 + 0.8i,  0 + 0i;
      -1.89 + 1.15i,  0.04 - 3.69i,  -0.02 + 0.46i,  0.33 - 0.26i];
[rcond, info] = f07tu(norm_p, uplo, diag, a)
 

rcond =

    0.0268


info =

                    0



PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013