Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dsysv (f07ma)

Purpose

nag_lapack_dsysv (f07ma) computes the solution to a real system of linear equations
 AX = B , $AX=B ,$
where A$A$ is an n$n$ by n$n$ symmetric matrix and X$X$ and B$B$ are n$n$ by r$r$ matrices.

Syntax

[a, ipiv, b, info] = f07ma(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)
[a, ipiv, b, info] = nag_lapack_dsysv(uplo, a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_dsysv (f07ma) uses the diagonal pivoting method to factor A$A$ as A = UDUT$A=UD{U}^{\mathrm{T}}$ if uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or A = LDLT$A=LD{L}^{\mathrm{T}}$ if uplo = 'L'${\mathbf{uplo}}=\text{'L'}$, where U$U$ (or L$L$) is a product of permutation and unit upper (lower) triangular matrices, and D$D$ is symmetric and block diagonal with 1$1$ by 1$1$ and 2$2$ by 2$2$ diagonal blocks. The factored form of A$A$ is then used to solve the system of equations AX = B$AX=B$.
Note that, in general, different permutations (pivot sequences) and diagonal block structures are obtained for uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or 'L'$\text{'L'}$

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
If uplo = 'U'${\mathbf{uplo}}=\text{'U'}$, the upper triangle of A$A$ is stored.
If uplo = 'L'${\mathbf{uplo}}=\text{'L'}$, the lower triangle of A$A$ is stored.
Constraint: uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or 'L'$\text{'L'}$.
2:     a(lda, : $:$) – double array
The first dimension of the array a must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The n$n$ by n$n$ symmetric matrix A$A$.
• If uplo = 'U'${\mathbf{uplo}}=\text{'U'}$, the upper triangular part of a$a$ must be stored and the elements of the array below the diagonal are not referenced.
• If uplo = 'L'${\mathbf{uplo}}=\text{'L'}$, the lower triangular part of a$a$ must be stored and the elements of the array above the diagonal are not referenced.
3:     b(ldb, : $:$) – double array
The first dimension of the array b must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ right-hand side matrix B$B$.

Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the arrays a, b The second dimension of the array a.
n$n$, the number of linear equations, i.e., the order of the matrix A$A$.
Constraint: n0${\mathbf{n}}\ge 0$.
2:     nrhs_p – int64int32nag_int scalar
Default: The second dimension of the array b.
r$r$, the number of right-hand sides, i.e., the number of columns of the matrix B$B$.
Constraint: nrhs0${\mathbf{nrhs}}\ge 0$.

Input Parameters Omitted from the MATLAB Interface

lda ldb work lwork

Output Parameters

1:     a(lda, : $:$) – double array
The first dimension of the array a will be max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array will be max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
ldamax (1,n)$\mathit{lda}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
If ${\mathbf{INFO}}={\mathbf{0}}$, the block diagonal matrix D$D$ and the multipliers used to obtain the factor U$U$ or L$L$ from the factorization A = UDUT$A=UD{U}^{\mathrm{T}}$ or A = LDLT$A=LD{L}^{\mathrm{T}}$ as computed by nag_lapack_dsytrf (f07md).
2:     ipiv( : $:$) – int64int32nag_int array
Note: the dimension of the array ipiv must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
Details of the interchanges and the block structure of D$D$. More precisely,
• if ipiv(i) = k > 0${\mathbf{ipiv}}\left(i\right)=k>0$, dii${d}_{ii}$ is a 1$1$ by 1$1$ pivot block and the i$i$th row and column of A$A$ were interchanged with the k$k$th row and column;
• if uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ and ipiv(i1) = ipiv(i) = l < 0${\mathbf{ipiv}}\left(i-1\right)={\mathbf{ipiv}}\left(i\right)=-l<0$,  ( di − 1,i − 1 di,i − 1 ) di,i − 1 dii
$\left(\begin{array}{cc}{d}_{i-1,i-1}& {\stackrel{-}{d}}_{i,i-1}\\ {\stackrel{-}{d}}_{i,i-1}& {d}_{ii}\end{array}\right)$ is a 2$2$ by 2$2$ pivot block and the (i1)$\left(i-1\right)$th row and column of A$A$ were interchanged with the l$l$th row and column;
• if uplo = 'L'${\mathbf{uplo}}=\text{'L'}$ and ipiv(i) = ipiv(i + 1) = m < 0${\mathbf{ipiv}}\left(i\right)={\mathbf{ipiv}}\left(i+1\right)=-m<0$,  ( dii di + 1,i ) di + 1,i di + 1,i + 1
$\left(\begin{array}{cc}{d}_{ii}& {d}_{i+1,i}\\ {d}_{i+1,i}& {d}_{i+1,i+1}\end{array}\right)$ is a 2$2$ by 2$2$ pivot block and the (i + 1)$\left(i+1\right)$th row and column of A$A$ were interchanged with the m$m$th row and column.
3:     b(ldb, : $:$) – double array
The first dimension of the array b will be max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array will be max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
ldbmax (1,n)$\mathit{ldb}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
If ${\mathbf{INFO}}={\mathbf{0}}$, the n$n$ by r$r$ solution matrix X$X$.
4:     info – int64int32nag_int scalar
info = 0${\mathbf{info}}=0$ unless the function detects an error (see Section [Error Indicators and Warnings]).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

info = i${\mathbf{info}}=-i$
If info = i${\mathbf{info}}=-i$, parameter i$i$ had an illegal value on entry. The parameters are numbered as follows:
1: uplo, 2: n, 3: nrhs_p, 4: a, 5: lda, 6: ipiv, 7: b, 8: ldb, 9: work, 10: lwork, 11: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.
W INFO > 0${\mathbf{INFO}}>0$
If info = i${\mathbf{info}}=i$, dii${d}_{ii}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D$D$ is exactly singular, so the solution could not be computed.

Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 (A + E) x̂ = b , $(A+E) x^=b ,$
where
 ‖E‖1 = O(ε) ‖A‖1 $‖E‖1 = O(ε) ‖A‖1$
and ε $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 (‖x̂ − x‖1)/(‖x‖1) ≤ κ(A) (‖E‖1)/(‖A‖1) , $‖x^-x‖1 ‖x‖1 ≤ κ(A) ‖E‖1 ‖A‖1 ,$
where κ(A) = A11 A1 $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of A $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
nag_lapack_dsysvx (f07mb) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, nag_linsys_real_symm_solve (f04bh) solves Ax = b $Ax=b$ and returns a forward error bound and condition estimate. nag_linsys_real_symm_solve (f04bh) calls nag_lapack_dsysv (f07ma) to solve the equations.

The total number of floating point operations is approximately (1/3) n3 + 2n2r $\frac{1}{3}{n}^{3}+2{n}^{2}r$, where r $r$ is the number of right-hand sides.
The complex analogues of nag_lapack_dsysv (f07ma) are nag_lapack_zhesv (f07mn) for Hermitian matrices, and nag_lapack_zsysv (f07nn) for symmetric matrices.

Example

```function nag_lapack_dsysv_example
uplo = 'Upper';
a = [-1.81, 2.06, 0.63, -1.15;
0, 1.15, 1.87, 4.2;
0, 0, -0.21, 3.87;
0, 0, 0, 2.07];
b = [0.96;
6.07;
8.38;
9.5];
[aOut, ipiv, bOut, info] = nag_lapack_dsysv(uplo, a, b)
```
```

aOut =

0.4074    0.3031   -0.5960    0.6537
0   -2.5907    0.8115    0.2230
0         0    1.1500    4.2000
0         0         0    2.0700

ipiv =

1
2
-2
-2

bOut =

-5.0000
-2.0000
1.0000
4.0000

info =

0

```
```function f07ma_example
uplo = 'Upper';
a = [-1.81, 2.06, 0.63, -1.15;
0, 1.15, 1.87, 4.2;
0, 0, -0.21, 3.87;
0, 0, 0, 2.07];
b = [0.96;
6.07;
8.38;
9.5];
[aOut, ipiv, bOut, info] = f07ma(uplo, a, b)
```
```

aOut =

0.4074    0.3031   -0.5960    0.6537
0   -2.5907    0.8115    0.2230
0         0    1.1500    4.2000
0         0         0    2.0700

ipiv =

1
2
-2
-2

bOut =

-5.0000
-2.0000
1.0000
4.0000

info =

0

```