Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_zpprfs (f07gv)

## Purpose

nag_lapack_zpprfs (f07gv) returns error bounds for the solution of a complex Hermitian positive definite system of linear equations with multiple right-hand sides, AX = B$AX=B$, using packed storage. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

## Syntax

[x, ferr, berr, info] = f07gv(uplo, ap, afp, b, x, 'n', n, 'nrhs_p', nrhs_p)
[x, ferr, berr, info] = nag_lapack_zpprfs(uplo, ap, afp, b, x, 'n', n, 'nrhs_p', nrhs_p)

## Description

nag_lapack_zpprfs (f07gv) returns the backward errors and estimated bounds on the forward errors for the solution of a complex Hermitian positive definite system of linear equations with multiple right-hand sides AX = B$AX=B$, using packed storage. The function handles each right-hand side vector (stored as a column of the matrix B$B$) independently, so we describe the function of nag_lapack_zpprfs (f07gv) in terms of a single right-hand side b$b$ and solution x$x$.
Given a computed solution x$x$, the function computes the component-wise backward error β$\beta$. This is the size of the smallest relative perturbation in each element of A$A$ and b$b$ such that x$x$ is the exact solution of a perturbed system
 (A + δA)x = b + δb |δaij| ≤ β|aij|   and   |δbi| ≤ β|bi| .
$(A+δA)x=b+δb |δaij|≤β|aij| and |δbi|≤β|bi| .$
Then the function estimates a bound for the component-wise forward error in the computed solution, defined by:
 max |xi − x̂i| / max |xi| i i
$maxi|xi-x^i|/maxi|xi|$
where $\stackrel{^}{x}$ is the true solution.
For details of the method, see the F07 Chapter Introduction.

## References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## Parameters

### Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies whether the upper or lower triangular part of A$A$ is stored and how A$A$ is to be factorized.
uplo = 'U'${\mathbf{uplo}}=\text{'U'}$
The upper triangular part of A$A$ is stored and A$A$ is factorized as UHU${U}^{\mathrm{H}}U$, where U$U$ is upper triangular.
uplo = 'L'${\mathbf{uplo}}=\text{'L'}$
The lower triangular part of A$A$ is stored and A$A$ is factorized as LLH$L{L}^{\mathrm{H}}$, where L$L$ is lower triangular.
Constraint: uplo = 'U'${\mathbf{uplo}}=\text{'U'}$ or 'L'$\text{'L'}$.
2:     ap( : $:$) – complex array
Note: the dimension of the array ap must be at least max (1,n × (n + 1) / 2)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
The n$n$ by n$n$ original Hermitian positive definite matrix A$A$ as supplied to nag_lapack_zpptrf (f07gr).
3:     afp( : $:$) – complex array
Note: the dimension of the array afp must be at least max (1,n × (n + 1) / 2)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
The Cholesky factor of A$A$ stored in packed form, as returned by nag_lapack_zpptrf (f07gr).
4:     b(ldb, : $:$) – complex array
The first dimension of the array b must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ right-hand side matrix B$B$.
5:     x(ldx, : $:$) – complex array
The first dimension of the array x must be at least max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array must be at least max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
The n$n$ by r$r$ solution matrix X$X$, as returned by nag_lapack_zpptrs (f07gs).

### Optional Input Parameters

1:     n – int64int32nag_int scalar
Default: The first dimension of the arrays b, x.
n$n$, the order of the matrix A$A$.
Constraint: n0${\mathbf{n}}\ge 0$.
2:     nrhs_p – int64int32nag_int scalar
Default: The second dimension of the arrays b, x. (An error is raised if these dimensions are not equal.)
r$r$, the number of right-hand sides.
Constraint: nrhs0${\mathbf{nrhs}}\ge 0$.

### Input Parameters Omitted from the MATLAB Interface

ldb ldx work rwork

### Output Parameters

1:     x(ldx, : $:$) – complex array
The first dimension of the array x will be max (1,n)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
The second dimension of the array will be max (1,nrhs)$\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$
ldxmax (1,n)$\mathit{ldx}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The improved solution matrix X$X$.
2:     ferr(nrhs_p) – double array
ferr(j)${\mathbf{ferr}}\left(\mathit{j}\right)$ contains an estimated error bound for the j$\mathit{j}$th solution vector, that is, the j$\mathit{j}$th column of X$X$, for j = 1,2,,r$\mathit{j}=1,2,\dots ,r$.
3:     berr(nrhs_p) – double array
berr(j)${\mathbf{berr}}\left(\mathit{j}\right)$ contains the component-wise backward error bound β$\beta$ for the j$\mathit{j}$th solution vector, that is, the j$\mathit{j}$th column of X$X$, for j = 1,2,,r$\mathit{j}=1,2,\dots ,r$.
4:     info – int64int32nag_int scalar
info = 0${\mathbf{info}}=0$ unless the function detects an error (see Section [Error Indicators and Warnings]).

## Error Indicators and Warnings

info = i${\mathbf{info}}=-i$
If info = i${\mathbf{info}}=-i$, parameter i$i$ had an illegal value on entry. The parameters are numbered as follows:
1: uplo, 2: n, 3: nrhs_p, 4: ap, 5: afp, 6: b, 7: ldb, 8: x, 9: ldx, 10: ferr, 11: berr, 12: work, 13: rwork, 14: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

## Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n2$16{n}^{2}$ real floating point operations. Each step of iterative refinement involves an additional 24n2$24{n}^{2}$ real operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b$Ax=b$; the number is usually 5$5$ and never more than 11$11$. Each solution involves approximately 8n2$8{n}^{2}$ real operations.
The real analogue of this function is nag_lapack_dpprfs (f07gh).

## Example

```function nag_lapack_zpprfs_example
uplo = 'L';
ap = [3.23;
1.51 + 1.92i;
1.9 - 0.84i;
0.42 - 2.5i;
3.58 + 0i;
-0.23 - 1.11i;
-1.18 - 1.37i;
4.09 + 0i;
2.33 + 0.14i;
4.29 + 0i];
afp = [1.797220075561143;
0.8401864749527325 + 1.068316577423342i;
1.057188279741849 - 0.467388502622712i;
0.233694251311356 - 1.391037210186643i;
1.316353439509685 + 0i;
-0.4701749470106329 + 0.3130658155999466i;
0.08335250923944192 + 0.03676071443037458i;
1.560392977137124 + 0i;
0.9359617337923402 + 0.9899692192815736i;
0.6603332973655893 + 0i];
b = [ 3.93 - 6.14i,  1.48 + 6.58i;
6.17 + 9.42i,  4.65 - 4.75i;
-7.17 - 21.83i,  -4.91 + 2.29i;
1.99 - 14.38i,  7.64 - 10.79i];
x = [ 1 - 1i,  -1 + 2i;
6.020812984559171e-17 + 3i,  3 - 4i;
-4 - 5i,  -2 + 3i;
2 + 1i,  4 - 5i];
[xOut, ferr, berr, info] = nag_lapack_zpprfs(uplo, ap, afp, b, x)
```
```

xOut =

1.0000 - 1.0000i  -1.0000 + 2.0000i
0.0000 + 3.0000i   3.0000 - 4.0000i
-4.0000 - 5.0000i  -2.0000 + 3.0000i
2.0000 + 1.0000i   4.0000 - 5.0000i

ferr =

1.0e-13 *

0.5724
0.7167

berr =

1.0e-16 *

0.3358
0.3581

info =

0

```
```function f07gv_example
uplo = 'L';
ap = [3.23;
1.51 + 1.92i;
1.9 - 0.84i;
0.42 - 2.5i;
3.58 + 0i;
-0.23 - 1.11i;
-1.18 - 1.37i;
4.09 + 0i;
2.33 + 0.14i;
4.29 + 0i];
afp = [1.797220075561143;
0.8401864749527325 + 1.068316577423342i;
1.057188279741849 - 0.467388502622712i;
0.233694251311356 - 1.391037210186643i;
1.316353439509685 + 0i;
-0.4701749470106329 + 0.3130658155999466i;
0.08335250923944192 + 0.03676071443037458i;
1.560392977137124 + 0i;
0.9359617337923402 + 0.9899692192815736i;
0.6603332973655893 + 0i];
b = [ 3.93 - 6.14i,  1.48 + 6.58i;
6.17 + 9.42i,  4.65 - 4.75i;
-7.17 - 21.83i,  -4.91 + 2.29i;
1.99 - 14.38i,  7.64 - 10.79i];
x = [ 1 - 1i,  -1 + 2i;
6.020812984559171e-17 + 3i,  3 - 4i;
-4 - 5i,  -2 + 3i;
2 + 1i,  4 - 5i];
[xOut, ferr, berr, info] = f07gv(uplo, ap, afp, b, x)
```
```

xOut =

1.0000 - 1.0000i  -1.0000 + 2.0000i
0.0000 + 3.0000i   3.0000 - 4.0000i
-4.0000 - 5.0000i  -2.0000 + 3.0000i
2.0000 + 1.0000i   4.0000 - 5.0000i

ferr =

1.0e-13 *

0.5724
0.7167

berr =

1.0e-16 *

0.3358
0.3581

info =

0

```