hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_glopt_optset (e05zk)

Purpose

nag_glopt_optset (e05zk) either initializes or resets the optional parameter arrays or sets a single optional parameter for supported problem solving functions in Chapter E05. The following functions are supported:

Syntax

[iopts, opts, ifail] = e05zk(optstr, iopts, opts, 'liopts', liopts, 'lopts', lopts)
[iopts, opts, ifail] = nag_glopt_optset(optstr, iopts, opts, 'liopts', liopts, 'lopts', lopts)

Description

nag_glopt_optset (e05zk) has three purposes: to initialize optional parameter arrays; to reset all optional parameters to their default values; or to set a single optional parameter to a user-supplied value.
Optional parameters and their values are, in general, presented as a character string, optstr, of the form ‘option = optval=optval’; alphabetic characters can be supplied in either upper or lower case. Both option and optvaloptval may consist of one or more tokens separated by white space. The tokens that comprise optvaloptval will normally be either an integer, real or character value as defined in the description of the specific optional argument. In addition all optional parameters can take an optvaloptval DEFAULT which resets the optional parameter to its default value.
It is imperative that optional parameter arrays are initialized before any options are set, before the relevant problem solving function is called and before any options are queried using nag_glopt_optget (e05zl). To initialize the optional parameter arrays iopts and opts for a specific problem solving function, the option Initialize is used with optval identifying the problem solving function to be called, via its short name. For example, to initialize optional parameter arrays to be passed to nag_glopt_bnd_pso (e05sa), nag_glopt_optset (e05zk) is called as follows:
[iopts, opts, ifail] = e05zk('Initialize = e05sa', iopts, opts);
Information relating to available option names and their corresponding valid values is given in Section [Optional Parameters] in (e05sa), (e05sb), (e05uc) and (e05us).

References

None.

Parameters

Compulsory Input Parameters

1:     optstr – string
A string identifying the option to be set.
Initialize = function nameInitialize=function name
Initialize the optional parameter arrays iopts and opts for use with function function namefunction name, where function namefunction name is the short name associated with the function of interest.
DefaultsDefaults
Resets all options to their default values.
option = optvaloption=optval
See Section [Optional Parameters] in (e05sa), (e05sb), (e05uc) and (e05us) for details of valid values for option and optval. The equals sign ( = =) delimiter must be used to separate the option from its optval value.
optstr is case insensitive. Each token in the option and optval component must be separated by at least one space.
2:     iopts(liopts) – int64int32nag_int array
liopts, the dimension of the array, must satisfy the constraint unless otherwise stated in the documentation for a specific, supported, problem solving function, liopts100liopts100.
Optional parameter array.
If optstr has the form Initialize = function nameInitialize=function name, the contents of iopts need not be set.
Otherwise, iopts must not have been altered since the last call to nag_glopt_optset (e05zk), nag_glopt_optget (e05zl) or the selected problem solving function.
3:     opts(lopts) – double array
lopts, the dimension of the array, must satisfy the constraint unless otherwise stated in the documentation for a specific, supported, problem solving function, lopts100lopts100.
Optional parameter array.
If optstr has the form Initialize = function nameInitialize=function name, the contents of opts need not be set.
Otherwise, opts must not have been altered since the last call to nag_glopt_optset (e05zk), nag_glopt_optget (e05zl) or the selected problem solving function.

Optional Input Parameters

1:     liopts – int64int32nag_int scalar
Default: The dimension of the array iopts.
The length of the array iopts.
Constraint: unless otherwise stated in the documentation for a specific, supported, problem solving function, liopts100liopts100.
2:     lopts – int64int32nag_int scalar
Default: The dimension of the array opts.
The length of the array opts.
Constraint: unless otherwise stated in the documentation for a specific, supported, problem solving function, lopts100lopts100.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

1:     iopts(liopts) – int64int32nag_int array
Dependent on the contents of optstr, either an initialized, reset or updated version of the optional parameter array.
2:     opts(lopts) – double array
Dependent on the contents of optstr, either an initialized, reset or updated version of the optional parameter array.
3:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:
  ifail = 11ifail=11
On entry, the optional parameter in optstr was not recognized.
  ifail = 12ifail=12
On entry, the expected delimiter ‘ = =’ was not found in optstr.
  ifail = 13ifail=13
On entry, could not convert the specified optval to an integer.
On entry, could not convert the specified optval to a real.
The option in optstr is associated with a numerical value. The option in optstr is associated with a numerical value.
  ifail = 14ifail=14
On entry, the option in optstr has been detected as Initialize, however the optval, "_"_, associated with optstr has not been recognized as a valid function name.
  ifail = 15ifail=15
On entry, the optval supplied for the integer optional parameter is not valid. On entry, the optval supplied for the integer optional parameter is not valid. On entry, the optval supplied for the integer optional parameter is not valid. On entry, the optval supplied for the integer optional parameter is not valid. On entry, the optval supplied for the integer optional parameter is not valid. On entry, the optval supplied for the integer optional parameter is not valid.
  ifail = 16ifail=16
On entry, the optval supplied for the real optional parameter is not valid. On entry, the optval supplied for the real optional parameter is not valid. On entry, the optval supplied for the real optional parameter is not valid. On entry, the optval supplied for the real optional parameter is not valid. On entry, the optval supplied for the real optional parameter is not valid. On entry, the optval supplied for the real optional parameter is not valid.
  ifail = 17ifail=17
On entry, the optional parameter in optstr was not recognized.
On entry, the optval supplied for the character optional parameter is not valid.
  ifail = 21ifail=21
On entry, either the option arrays have not been initialized or they have been corrupted. On entry, either the option arrays have not been initialized or they have been corrupted. On entry, either the option arrays have not been initialized or they have been corrupted.
On entry, the optional parameter in optstr was not recognized.
  ifail = 31ifail=31
liopts is too small.
  ifail = 51ifail=51
lopts is too small.
  ifail = 999ifail=-999
Dynamic memory allocation failed.

Accuracy

Not applicable.

Further Comments

Some options have default values which are problem dependent. For example the option Maximum Iterations Completed for nag_glopt_bnd_pso (e05sa) has the default value 1000 × ndim1000×ndim. If options such as this are set, they may only be set to constant values. If such an option is reset to its DEFAULT value its dependence on the specific problem will be restored.

Example

function nag_glopt_optset_example
npar = int64(5);
bu = [ 500,  500];
bl = [-500, -500];

x_target = [-420.9687463599820;-420.9687463599820];
f_target = -837.9657745448674;

iopts = zeros(100, 1, 'int64');
opts  = zeros(100, 1);


% Initialize the option arrays for nag_glopt_bnd_pso
[iopts, opts, ifail] = ...
    nag_glopt_optset('Initialize = nag_glopt_bnd_pso', iopts, opts);

% Query some default option values.
fprintf('\nDefault Option Queries:\n\n');
[ivalue, rvalue, cvalue, optype, ifail] = ...
      nag_glopt_optget('Boundary', iopts, opts);
fprintf('Boundary                     : %s\n', cvalue);
[ivalue, rvalue, cvalue, optype, ifail] = ...
      nag_glopt_optget('Maximum Iterations Completed', iopts, opts);
fprintf('Maximum Iterations Completed : %d (%s)\n', ivalue, strtrim(cvalue));
[ivalue, rvalue, cvalue, optype, ifail] = ...
      nag_glopt_optget('Distance Tolerance', iopts, opts);
fprintf('Distance Tolerance           : %15.4e\n', rvalue);

fprintf('\n1. Solution without using coupled local minimizer.\n');

% Set various options to non-default values if required.
[iopts, opts, ifail] = nag_glopt_optset('Repeatability = On', iopts, opts);
[iopts, opts, ifail] = nag_glopt_optset('Verify Gradients = Off', iopts, opts);
[iopts, opts, ifail] = nag_glopt_optset('Boundary = Hyperspherical', iopts, opts);
[iopts, opts, ifail] = nag_glopt_optset('Maximum iterations static = 150', iopts, opts);
[iopts, opts, ifail] = nag_glopt_optset('Repulsion Initialize = 30', iopts, opts);
[iopts, opts, ifail] = nag_glopt_optset('Repulsion Finalize = 30', iopts, opts);

% Call nag_glopt_bnd_pso to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      nag_glopt_bnd_pso(bl, bu, @objfun, 'nag_glopt_bnd_pso_dummy_monmod', ...
                        iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % nag_glopt_bnd_pso encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by nag_glopt_bnd_pso from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end


fprintf('\n2. Solution using coupled local minimizer nag_opt_uncon_simplex.\n');

% Set an objective target
optstr = sprintf('Target Objective Value = %32.16e', f_target);
[iopts, opts, ifail] = ...
    nag_glopt_optset(optstr, iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Target Objective Tolerance = 1.0e-5', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Target Objective Safeguard = 1.0e-8', iopts, opts);

% Set the local minimizer to be nag_opt_uncon_simplex and set corresponding options
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Minimizer = nag_opt_uncon_simplex', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Interior Iterations = 10', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Exterior Iterations = 20', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Interior Tolerance = 1.0e-4', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Exterior Tolerance = 1.0e-4', iopts, opts);

% Call nag_glopt_bnd_pso to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      nag_glopt_bnd_pso(bl, bu, @objfun, 'nag_glopt_bnd_pso_dummy_monmod', ...
                        iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % nag_glopt_bnd_pso encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by nag_glopt_bnd_pso from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end


fprintf('\n3. Solution using coupled local minimizer nag_opt_uncon_conjgrd_comp.\n');

% Set the local minimizer to be nag_opt_uncon_conjgrd_comp and set
% corresponding options
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Minimizer = nag_opt_uncon_conjgrd_comp', ...
                     iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Interior Iterations = 5', iopts, opts);
[iopts, opts, ifail] = ...
    nag_glopt_optset('Local Exterior Iterations = 20', iopts, opts);

%[iopts, opts, ifail] = ...
    nag_glopt_optset('Verify Gradients = off', iopts, opts);
% Call nag_glopt_bnd_pso to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      nag_glopt_bnd_pso(bl, bu, @objfun, 'nag_glopt_bnd_pso_dummy_monmod', ...
                        iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % nag_glopt_bnd_pso encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by nag_glopt_bnd_pso from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end



function [mode, objf, vecout, user] = objfun(mode, ndim, x, objf, vecout, nstate, user)
  % Test nstate to indicate what stage of computation has been reached.
  switch nstate
    case (2)
      % objfun is called for the very first time.
    case (-1)
      % objfun is called for the first time on a new slave thread.
      % This will never happen if running in a serial context.
    case (1)
      % objfun is called on entry to a NAG local minimiser.
    case (0)
      % This will be the normal value of NSTATE.
    otherwise
      % This is extremely unlikely, and indicates that an error has
      % occurred on the system
      mode = int64(-1);
      error('*** Error detected in objfun');
  end

  % Test mode to determine whether to calculate objf and/or objgrd.
  evalobjf = false;
  evalobjg = false;
  switch mode
    case {0,5}
      % Only the value of the objective function is needed.
      evalobjf = true;
    case {1,6}
      % Only the values of the NDIM gradients are required.
      evalobjg = true;
    case {2,7}
      % Both the objective function and the NDIM gradients are required.
      evalobjf = true;
      evalobjg = true;
    otherwise
      mode = int64(-1);
      error('*** Illegal value of mode (%d) in objfun', mode);
  end

  if evalobjf
    % Evaluate the objective function.
    objf = sum(x(1:double(ndim)).*sin(sqrt(abs(x(1:double(ndim))))));
  end

  if evalobjg
    % Calculate the gradient of the objective function,
    % and return the result in vecout.
    vecout = sqrt(abs(x));
    for i=1:double(ndim)
      if abs(x(i)) < nag_machine_precision
        vecout(i) = 0;
      else
        vecout(i) = sin(vecout(i)) + ...
                      signtransfer(x(i)*cos(vecout(i))/(2.0*vecout(i)), x(i));
      end
    end
  end
  function [r] = signtransfer(x, y)
    if y >= 0
      r = abs(x);
    else
      r = -abs(x);
    end
function [] = display_result(x_target, f_target, xb,fb,itt,inform)

  % Display final counters.
  fprintf('\nAlgorithm Statistics\n--------------------\n');
  fprintf('Total complete iterations             : %d\n', itt(1));
  fprintf('Complete iterations since improvement : %d\n', itt(2));
  fprintf('Total particles converged to xb       : %d\n', itt(3));
  fprintf('Total improvements to global optimum  : %d\n', itt(4));
  fprintf('Total function evaluations            : %d\n', itt(5));
  fprintf('Total particles re-initialized        : %d\n\n', itt(6));

  % Display why finalization occurred.
  switch inform
  case 0
     fprintf('Solution Status : An error was detected by nag_glopt_bnd_pso\n');
  case 1
     fprintf('Solution Status : Target value achieved\n');
  case 2
     fprintf('Solution Status : Minimum swarm standard deviation obtained\n');
  case 3
     fprintf('Solution Status : Sufficient particles converged\n');
  case 4
     fprintf('Solution Status : No improvement in preset iteration limit\n');
  case 5
     fprintf('Solution Status : Maximum complete iterations attained\n');
  case 6
     fprintf('Solution Status : Maximum function evaluations exceeded\n');
  otherwise
     fprintf('User termination case:  %d\n', inform);
  end

  % Display final objective value and location.
  fprintf('\n  Known objective optimum  : %13.5f\n', f_target);
  fprintf('  Achieved objective value : %13.5f\n\n', fb);

  title = 'Comparison between known and achieved optima.';
  clabs = {'x_target'; 'xb      '};
  [ifail] = ...
    nag_file_print_matrix_real_gen_comp('G', 'N', [x_target, xb], 'f9.2', title, 'I', clabs, ...
                  'C', clabs, int64(80), int64(0));
  fprintf('\n');
 

Default Option Queries:

Boundary                     : FLOATING                        
Maximum Iterations Completed : 1000 (DEFAULT)
Distance Tolerance           :      1.0000e-04

1. Solution without using coupled local minimizer.
Warning: nag_glopt_bnd_pso (e05sa) returned a warning indicator (1) 

Algorithm Statistics
--------------------
Total complete iterations             : 395
Complete iterations since improvement : 152
Total particles converged to xb       : 2
Total improvements to global optimum  : 59
Total function evaluations            : 2773
Total particles re-initialized        : 2

Solution Status : No improvement in preset iteration limit

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96567

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.95
 2   -420.97  -420.94


2. Solution using coupled local minimizer nag_opt_uncon_simplex.

Algorithm Statistics
--------------------
Total complete iterations             : 51
Complete iterations since improvement : 1
Total particles converged to xb       : 0
Total improvements to global optimum  : 12
Total function evaluations            : 537
Total particles re-initialized        : 0

Solution Status : Target value achieved

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96577

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.97
 2   -420.97  -420.97


3. Solution using coupled local minimizer nag_opt_uncon_conjgrd_comp.

Algorithm Statistics
--------------------
Total complete iterations             : 8
Complete iterations since improvement : 1
Total particles converged to xb       : 0
Total improvements to global optimum  : 10
Total function evaluations            : 120
Total particles re-initialized        : 0

Solution Status : Target value achieved

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96561

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.94
 2   -420.97  -420.98


function e05zk_example
npar = int64(5);
bu = [ 500,  500];
bl = [-500, -500];

x_target = [-420.9687463599820;-420.9687463599820];
f_target = -837.9657745448674;

iopts = zeros(100, 1, 'int64');
opts  = zeros(100, 1);


% Initialize the option arrays for e05sa
[iopts, opts, ifail] = e05zk('Initialize = e05sa', iopts, opts);

% Query some default option values.
fprintf('\nDefault Option Queries:\n\n');
[ivalue, rvalue, cvalue, optype, ifail] = ...
      e05zl('Boundary', iopts, opts);
fprintf('Boundary                     : %s\n', cvalue);
[ivalue, rvalue, cvalue, optype, ifail] = ...
      e05zl('Maximum Iterations Completed', iopts, opts);
fprintf('Maximum Iterations Completed : %d (%s)\n', ivalue, strtrim(cvalue));
[ivalue, rvalue, cvalue, optype, ifail] = ...
      e05zl('Distance Tolerance', iopts, opts);
fprintf('Distance Tolerance           : %15.4e\n', rvalue);

fprintf('\n1. Solution without using coupled local minimizer.\n');

% Set various options to non-default values if required.
[iopts, opts, ifail] = e05zk('Repeatability = On', iopts, opts);
[iopts, opts, ifail] = e05zk('Verify Gradients = Off', iopts, opts);
[iopts, opts, ifail] = e05zk('Boundary = Hyperspherical', iopts, opts);
[iopts, opts, ifail] = e05zk('Maximum iterations static = 150', iopts, opts);
[iopts, opts, ifail] = e05zk('Repulsion Initialize = 30', iopts, opts);
[iopts, opts, ifail] = e05zk('Repulsion Finalize = 30', iopts, opts);

% Call e05sa to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      e05sa(bl, bu, @objfun, 'e05sxm', iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % e05sa encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by e05sa from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end


fprintf('\n2. Solution using coupled local minimizer e04cb.\n');

% Set an objective target
optstr = sprintf('Target Objective Value = %32.16e', f_target);
[iopts, opts, ifail] = e05zk(optstr, iopts, opts);
[iopts, opts, ifail] = e05zk('Target Objective Tolerance = 1.0e-5', iopts, opts);
[iopts, opts, ifail] = e05zk('Target Objective Safeguard = 1.0e-8', iopts, opts);

% Set the local minimizer to be e04cb and set corresponding options
[iopts, opts, ifail] = e05zk('Local Minimizer = e04cb', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Interior Iterations = 10', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Exterior Iterations = 20', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Interior Tolerance = 1.0e-4', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Exterior Tolerance = 1.0e-4', iopts, opts);

% Call e05sa to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      e05sa(bl, bu, @objfun, 'e05sxm', iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % e05sa encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by e05sa from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end


fprintf('\n3. Solution using coupled local minimizer e04dg.\n');

% Set the local minimizer to be e04dg and set corresponding options
[iopts, opts, ifail] = e05zk('Local Minimizer = e04dg', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Interior Iterations = 5', iopts, opts);
[iopts, opts, ifail] = e05zk('Local Exterior Iterations = 20', iopts, opts);

%[iopts, opts, ifail] = e05zk('Verify Gradients = off', iopts, opts);
% Call e05sa to search for the global optimum.
[xb, fb, iopts, opts, user, itt, inform, ifail] = ...
      e05sa(bl, bu, @objfun, 'e05sxm', iopts, opts, 'npar', npar);

switch ifail
  case {0,1}
    % e05sa encountered no errors during operation,
    % and will have returned the best optimum found.
    display_result(x_target, f_target, xb,fb,itt,inform);
  case 3
    % An instruction to exit was received by e05sa from objfun or monmod.
    % The exit flag will have been returned in inform.
    display_result(x_target, f_target, xb,fb,itt,inform);
  otherwise
    % An error was detected, and a warning has been displayed
end



function [mode, objf, vecout, user] = objfun(mode, ndim, x, objf, vecout, nstate, user)
  % Test nstate to indicate what stage of computation has been reached.
  switch nstate
    case (2)
      % objfun is called for the very first time.
    case (-1)
      % objfun is called for the first time on a new slave thread.
      % This will never happen if running in a serial context.
    case (1)
      % objfun is called on entry to a NAG local minimiser.
    case (0)
      % This will be the normal value of NSTATE.
    otherwise
      % This is extremely unlikely, and indicates that an error has
      % occurred on the system
      mode = int64(-1);
      error('*** Error detected in objfun');
  end

  % Test mode to determine whether to calculate objf and/or objgrd.
  evalobjf = false;
  evalobjg = false;
  switch mode
    case {0,5}
      % Only the value of the objective function is needed.
      evalobjf = true;
    case {1,6}
      % Only the values of the NDIM gradients are required.
      evalobjg = true;
    case {2,7}
      % Both the objective function and the NDIM gradients are required.
      evalobjf = true;
      evalobjg = true;
    otherwise
      mode = int64(-1);
      error('*** Illegal value of mode (%d) in objfun', mode);
  end

  if evalobjf
    % Evaluate the objective function.
    objf = sum(x(1:double(ndim)).*sin(sqrt(abs(x(1:double(ndim))))));
  end

  if evalobjg
    % Calculate the gradient of the objective function,
    % and return the result in vecout.
    vecout = sqrt(abs(x));
    for i=1:double(ndim)
      if abs(x(i)) < x02aj
        vecout(i) = 0;
      else
        vecout(i) = sin(vecout(i)) + ...
                      signtransfer(x(i)*cos(vecout(i))/(2.0*vecout(i)), x(i));
      end
    end
  end
  function [r] = signtransfer(x, y)
    if y >= 0
      r = abs(x);
    else
      r = -abs(x);
    end
function [] = display_result(x_target, f_target, xb,fb,itt,inform)

  % Display final counters.
  fprintf('\nAlgorithm Statistics\n--------------------\n');
  fprintf('Total complete iterations             : %d\n', itt(1));
  fprintf('Complete iterations since improvement : %d\n', itt(2));
  fprintf('Total particles converged to xb       : %d\n', itt(3));
  fprintf('Total improvements to global optimum  : %d\n', itt(4));
  fprintf('Total function evaluations            : %d\n', itt(5));
  fprintf('Total particles re-initialized        : %d\n\n', itt(6));

  % Display why finalization occurred.
  switch inform
  case 0
     fprintf('Solution Status : An error was detected by e05sa\n');
  case 1
     fprintf('Solution Status : Target value achieved\n');
  case 2
     fprintf('Solution Status : Minimum swarm standard deviation obtained\n');
  case 3
     fprintf('Solution Status : Sufficient particles converged\n');
  case 4
     fprintf('Solution Status : No improvement in preset iteration limit\n');
  case 5
     fprintf('Solution Status : Maximum complete iterations attained\n');
  case 6
     fprintf('Solution Status : Maximum function evaluations exceeded\n');
  otherwise
     fprintf('User termination case:  %d\n', inform);
  end

  % Display final objective value and location.
  fprintf('\n  Known objective optimum  : %13.5f\n', f_target);
  fprintf('  Achieved objective value : %13.5f\n\n', fb);

  title = 'Comparison between known and achieved optima.';
  clabs = {'x_target'; 'xb      '};
  [ifail] = x04cb('G', 'N', [x_target, xb], 'f9.2', title, 'I', clabs, ...
                  'C', clabs, int64(80), int64(0));
  fprintf('\n');
 

Default Option Queries:

Boundary                     : FLOATING                        
Maximum Iterations Completed : 1000 (DEFAULT)
Distance Tolerance           :      1.0000e-04

1. Solution without using coupled local minimizer.
Warning: nag_glopt_bnd_pso (e05sa) returned a warning indicator (1) 

Algorithm Statistics
--------------------
Total complete iterations             : 395
Complete iterations since improvement : 152
Total particles converged to xb       : 2
Total improvements to global optimum  : 59
Total function evaluations            : 2773
Total particles re-initialized        : 2

Solution Status : No improvement in preset iteration limit

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96567

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.95
 2   -420.97  -420.94


2. Solution using coupled local minimizer e04cb.

Algorithm Statistics
--------------------
Total complete iterations             : 51
Complete iterations since improvement : 1
Total particles converged to xb       : 0
Total improvements to global optimum  : 12
Total function evaluations            : 537
Total particles re-initialized        : 0

Solution Status : Target value achieved

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96577

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.97
 2   -420.97  -420.97


3. Solution using coupled local minimizer e04dg.

Algorithm Statistics
--------------------
Total complete iterations             : 8
Complete iterations since improvement : 1
Total particles converged to xb       : 0
Total improvements to global optimum  : 10
Total function evaluations            : 120
Total particles re-initialized        : 0

Solution Status : Target value achieved

  Known objective optimum  :    -837.96577
  Achieved objective value :    -837.96561

 Comparison between known and achieved optima.
    x_target       xb
 1   -420.97  -420.94
 2   -420.97  -420.98



PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013