hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_ode_bvp_ps_lin_cgl_grid (d02uc)

Purpose

nag_ode_bvp_ps_lin_cgl_grid (d02uc) returns the Chebyshev Gauss–Lobatto grid points on [a,b][a,b].

Syntax

[x, ifail] = d02uc(n, a, b)
[x, ifail] = nag_ode_bvp_ps_lin_cgl_grid(n, a, b)

Description

nag_ode_bvp_ps_lin_cgl_grid (d02uc) returns the Chebyshev Gauss–Lobatto grid points on [a,b][a,b]. The Chebyshev Gauss–Lobatto points on [1,1][-1,1] are computed as ti = cos(((i1)π)/n) ti = - cos( (i-1)π n ) , for i = 1,2,,n + 1i=1,2,,n+1. The Chebyshev Gauss–Lobatto points on an arbitrary domain [a,b] [a,b]  are:
xi = (ba)/2 ti + (a + b)/2 ,   i = 1,2,,n + 1 .
xi = b-a 2 ti + a+b 2 ,   i=1,2,,n+1 .

References

Trefethen L N (2000) Spectral Methods in MATLAB SIAM

Parameters

Compulsory Input Parameters

1:     n – int64int32nag_int scalar
nn, where the number of grid points is n + 1n+1. This is also the largest order of Chebyshev polynomial in the Chebyshev series to be computed.
Constraint: n > 0n>0 and n is even.
2:     a – double scalar
aa, the lower bound of domain [a,b][a,b].
Constraint: a < ba<b.
3:     b – double scalar
bb, the upper bound of domain [a,b][a,b].
Constraint: b > ab>a.

Optional Input Parameters

None.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

1:     x(n + 1n+1) – double array
The Chebyshev Gauss–Lobatto grid points, xixi, for i = 1,2,,n + 1i=1,2,,n+1, on [a,b][a,b].
2:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:
  ifail = 1ifail=1
Constraint: n > 0n>0.
Constraint: n is even.
  ifail = 2ifail=2
Constraint: a < ba<b.

Accuracy

The Chebyshev Gauss–Lobatto grid points computed should be accurate to within a small multiple of machine precision.

Further Comments

The number of operations is of the order n log(n) n log(n)  and there are no internal memory requirements; thus the computation remains efficient and practical for very fine discretizations (very large values of nn).

Example

function nag_ode_bvp_ps_lin_cgl_grid_example
n = int64(16);
a = 0;
b = 1.5;


% Set up boundary condition on left side of domain
y = [a];
% Set up Dirichlet condition using exact solution at x=a.
bmat = [1, 0];
bvec = exp(-a-1) + 1;

% Set up problem definition
f = [1, 1];

% Set up solution grid
[x, ifail] = nag_ode_bvp_ps_lin_cgl_grid(n, a, b);

% Set up problem right hand sides for grid and transform
f0 = ones(17, 1);
[c, ifail] = nag_ode_bvp_ps_lin_coeffs(n, f0);

% Solve in coefficient space
[bmat, f, uc, resid, ifail] = nag_ode_bvp_ps_lin_solve(n, a, b, c, bmat, y, bvec, f);
% Transform solution and derivative back to real space.
[u,  ifail] = nag_ode_bvp_ps_lin_cgl_vals(n, a, b, int64(0), uc(:, 1));
[ux, ifail] = nag_ode_bvp_ps_lin_cgl_vals(n, a, b, int64(1), uc(:, 2));

% Print Solution
fprintf('\nNumerical solution U and derivative Ux\n');
fprintf('      x          U          Ux\n');
for i=1:17
  fprintf('%10.4f %10.4f %10.4f\n', x(i), u(i), ux(i));
end
 

Numerical solution U and derivative Ux
      x          U          Ux
    0.0000     1.3679    -0.3679
    0.0144     1.3626    -0.3626
    0.0571     1.3475    -0.3475
    0.1264     1.3242    -0.3242
    0.2197     1.2953    -0.2953
    0.3333     1.2636    -0.2636
    0.4630     1.2315    -0.2315
    0.6037     1.2012    -0.2012
    0.7500     1.1738    -0.1738
    0.8963     1.1501    -0.1501
    1.0370     1.1304    -0.1304
    1.1667     1.1146    -0.1146
    1.2803     1.1023    -0.1023
    1.3736     1.0931    -0.0931
    1.4429     1.0869    -0.0869
    1.4856     1.0833    -0.0833
    1.5000     1.0821    -0.0821

function d02uc_example
n = int64(16);
a = 0;
b = 1.5;


% Set up boundary condition on left side of domain
y = [a];
% Set up Dirichlet condition using exact solution at x=a.
bmat = [1, 0];
bvec = exp(-a-1) + 1;

% Set up problem definition
f = [1, 1];

% Set up solution grid
[x, ifail] = d02uc(n, a, b);

% Set up problem right hand sides for grid and transform
f0 = ones(17, 1);
[c, ifail] = d02ua(n, f0);

% Solve in coefficient space
[bmat, f, uc, resid, ifail] = d02ue(n, a, b, c, bmat, y, bvec, f);
% Transform solution and derivative back to real space.
[u,  ifail] = d02ub(n, a, b, int64(0), uc(:, 1));
[ux, ifail] = d02ub(n, a, b, int64(1), uc(:, 2));

% Print Solution
fprintf('\nNumerical solution U and derivative Ux\n');
fprintf('      x          U          Ux\n');
for i=1:17
  fprintf('%10.4f %10.4f %10.4f\n', x(i), u(i), ux(i));
end
 

Numerical solution U and derivative Ux
      x          U          Ux
    0.0000     1.3679    -0.3679
    0.0144     1.3626    -0.3626
    0.0571     1.3475    -0.3475
    0.1264     1.3242    -0.3242
    0.2197     1.2953    -0.2953
    0.3333     1.2636    -0.2636
    0.4630     1.2315    -0.2315
    0.6037     1.2012    -0.2012
    0.7500     1.1738    -0.1738
    0.8963     1.1501    -0.1501
    1.0370     1.1304    -0.1304
    1.1667     1.1146    -0.1146
    1.2803     1.1023    -0.1023
    1.3736     1.0931    -0.0931
    1.4429     1.0869    -0.0869
    1.4856     1.0833    -0.0833
    1.5000     1.0821    -0.0821


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013