hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sum_conjugate_hermitian_mult_rfmt (c06gq)

Purpose

nag_sum_conjugate_hermitian_mult_rfmt (c06gq) forms the complex conjugates of mm Hermitian sequences, each containing nn data values.
Note: this function is scheduled to be withdrawn, please see c06gq in Advice on Replacement Calls for Withdrawn/Superseded Routines..

Syntax

[x, ifail] = c06gq(m, n, x)
[x, ifail] = nag_sum_conjugate_hermitian_mult_rfmt(m, n, x)

Description

This is a utility function for use in conjunction with nag_sum_fft_real_1d_multi_rfmt (c06fp) and nag_sum_fft_hermitian_1d_multi_rfmt (c06fq) to calculate inverse discrete Fourier transforms (see the C06 Chapter Introduction).

References

None.

Parameters

Compulsory Input Parameters

1:     m – int64int32nag_int scalar
mm, the number of Hermitian sequences to be conjugated.
Constraint: m1m1.
2:     n – int64int32nag_int scalar
nn, the number of data values in each Hermitian sequence.
Constraint: n1n1.
3:     x( m × n m×n ) – double array
The data must be stored in x as if in a two-dimensional array of dimension (1 : m,0 : n1)(1:m,0:n-1); each of the mm sequences is stored in a row of the array in Hermitian form. If the nn data values zjpzjp are written as xjp + i yjpxjp + i yjp, then for 0 j n / 20 j n/2, xjpxjp is contained in x(p,j)xpj, and for 1 j (n1) / 21 j (n-1)/2, yjpyjp is contained in x(p,nj)xpn-j. (See also Section [Real transforms] in the C06 Chapter Introduction.)

Optional Input Parameters

None.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

1:     x( m × n m×n ) – double array
The imaginary parts yjp yjp are negated. The real parts xjp xjp are not referenced.
2:     ifail – int64int32nag_int scalar
ifail = 0ifail=0 unless the function detects an error (see [Error Indicators and Warnings]).

Error Indicators and Warnings

Errors or warnings detected by the function:
  ifail = 1ifail=1
On entry,m < 1m<1.
  ifail = 2ifail=2
On entry,n < 1n<1.

Accuracy

Exact.

Further Comments

None.

Example

function nag_sum_conjugate_hermitian_mult_rfmt_example
m = int64(3);
n = int64(6);
x = [0.3854;
     0.5417;
     0.9172;
     0.6772;
     0.2983;
     0.0644;
     0.1138;
     0.1181;
     0.6037;
     0.6751;
     0.7255;
     0.643;
     0.6362;
     0.8638;
     0.0428;
     0.1424;
     0.8723;
     0.4815];
[xOut, ifail] = nag_sum_conjugate_hermitian_mult_rfmt(m, n, x)
 

xOut =

    0.3854
    0.5417
    0.9172
    0.6772
    0.2983
    0.0644
    0.1138
    0.1181
    0.6037
    0.6751
    0.7255
    0.6430
   -0.6362
   -0.8638
   -0.0428
   -0.1424
   -0.8723
   -0.4815


ifail =

                    0


function c06gq_example
m = int64(3);
n = int64(6);
x = [0.3854;
     0.5417;
     0.9172;
     0.6772;
     0.2983;
     0.0644;
     0.1138;
     0.1181;
     0.6037;
     0.6751;
     0.7255;
     0.643;
     0.6362;
     0.8638;
     0.0428;
     0.1424;
     0.8723;
     0.4815];
[xOut, ifail] = c06gq(m, n, x)
 

xOut =

    0.3854
    0.5417
    0.9172
    0.6772
    0.2983
    0.0644
    0.1138
    0.1181
    0.6037
    0.6751
    0.7255
    0.6430
   -0.6362
   -0.8638
   -0.0428
   -0.1424
   -0.8723
   -0.4815


ifail =

                    0



PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013