hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_info_impl_details (a00aa)

Purpose

nag_info_impl_details (a00aa) prints information about the version of the NAG Toolbox in use.

Syntax

a00aa
nag_info_impl_details

Description

The NAG Toolbox is available for use on a number of different computer systems. For each distinct system an implementation of the library is prepared. This includes tested compiled libraries and any necessary system-specific support material. nag_info_impl_details (a00aa) may be called to print the implementation details and Mark (i.e., maintenance level) of the NAG Toolbox implementation that is being used.

References

None.

Parameters

Compulsory Input Parameters

None.

Optional Input Parameters

None.

Input Parameters Omitted from the MATLAB Interface

None.

Output Parameters

None.

Error Indicators and Warnings

None.

Accuracy

Not applicable.

Further Comments

None.

Example

function nag_info_impl_details_example
nag_info_impl_details;
 
 *** Start of NAG Toolbox for MATLAB implementation details ***

 Implementation title: Linux 64 (Intel 64 / AMD64), Intel Fortran, 64-bit Integer (ILP64)
            Precision: FORTRAN double precision
         Product Code: MBL6I24DML
                 Mark: 24.3

 *** End of NAG Toolbox for MATLAB implementation details ***

function a00aa_example
a00aa;
 
 *** Start of NAG Toolbox for MATLAB implementation details ***

 Implementation title: Linux 64 (Intel 64 / AMD64), Intel Fortran, 64-bit Integer (ILP64)
            Precision: FORTRAN double precision
         Product Code: MBL6I24DML
                 Mark: 24.3

 *** End of NAG Toolbox for MATLAB implementation details ***


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013