F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF07TJF (DTRTRI)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F07TJF (DTRTRI) computes the inverse of a real triangular matrix.

## 2  Specification

 SUBROUTINE F07TJF ( UPLO, DIAG, N, A, LDA, INFO)
 INTEGER N, LDA, INFO REAL (KIND=nag_wp) A(LDA,*) CHARACTER(1) UPLO, DIAG
The routine may be called by its LAPACK name dtrtri.

## 3  Description

F07TJF (DTRTRI) forms the inverse of a real triangular matrix $A$. Note that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

## 4  References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19

## 5  Parameters

1:     UPLO – CHARACTER(1)Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{UPLO}}=\text{'U'}$
$A$ is upper triangular.
${\mathbf{UPLO}}=\text{'L'}$
$A$ is lower triangular.
Constraint: ${\mathbf{UPLO}}=\text{'U'}$ or $\text{'L'}$.
2:     DIAG – CHARACTER(1)Input
On entry: indicates whether $A$ is a nonunit or unit triangular matrix.
${\mathbf{DIAG}}=\text{'N'}$
$A$ is a nonunit triangular matrix.
${\mathbf{DIAG}}=\text{'U'}$
$A$ is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be $1$.
Constraint: ${\mathbf{DIAG}}=\text{'N'}$ or $\text{'U'}$.
3:     N – INTEGERInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{N}}\ge 0$.
4:     A(LDA,$*$) – REAL (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array A must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
On entry: the $n$ by $n$ triangular matrix $A$.
• If ${\mathbf{UPLO}}=\text{'U'}$, $A$ is upper triangular and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{UPLO}}=\text{'L'}$, $A$ is lower triangular and the elements of the array above the diagonal are not referenced.
• If ${\mathbf{DIAG}}=\text{'U'}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
On exit: $A$ is overwritten by ${A}^{-1}$, using the same storage format as described above.
5:     LDA – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F07TJF (DTRTRI) is called.
Constraint: ${\mathbf{LDA}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
6:     INFO – INTEGEROutput
On exit: ${\mathbf{INFO}}=0$ unless the routine detects an error (see Section 6).

## 6  Error Indicators and Warnings

Errors or warnings detected by the routine:
${\mathbf{INFO}}<0$
If ${\mathbf{INFO}}=-i$, the $i$th parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{INFO}}>0$
If ${\mathbf{INFO}}=i$, $a\left(i,i\right)$ is exactly zero; $A$ is singular and its inverse cannot be computed.

## 7  Accuracy

The computed inverse $X$ satisfies
 $XA-I≤cnεXA ,$
where $c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.
Note that a similar bound for $\left|AX-I\right|$ cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound
 $X-A-1≤cnεA-1AX .$
See Du Croz and Higham (1992).

## 8  Further Comments

The total number of floating point operations is approximately $\frac{1}{3}{n}^{3}$.
The complex analogue of this routine is F07TWF (ZTRTRI).

## 9  Example

This example computes the inverse of the matrix $A$, where
 $A= 4.30 0.00 0.00 0.00 -3.96 -4.87 0.00 0.00 0.40 0.31 -8.02 0.00 -0.27 0.07 -5.95 0.12 .$

### 9.1  Program Text

Program Text (f07tjfe.f90)

### 9.2  Program Data

Program Data (f07tjfe.d)

### 9.3  Program Results

Program Results (f07tjfe.r)